期刊文献+

基于XGBOOST算法的变压器故障诊断 被引量:7

Power Transformer Fault Diagnosis Based on XGBoost Algorithm
下载PDF
导出
摘要 介绍了目前常用的变压器油中溶解气体分析方法的不足之处,针对油色谱在线监测系统产生的大量数据,尝试运用机器学习算法进行变压器故障诊断判别。由于变压器故障诊断中存在的小样本特点,运用一般的机器学习算法泛化能力差,通过运用XGBoost方法来拟合模型,并与几种常见的机器学习算法性能进行了比较,实验结果证明采用XGBoost提取特征的方法加上简单分类器可以达到很好的效果。 This paper introduces the shortcomings of the commonly used dissolved gas analysis methods in transformer oil. For the large amount of data generated by the oil chromatography online monitoring system, this paper attempts to use the machine learning algorithm to diagnose the transformer fault diagnosis. Due to the small sample characteristics of transformer fault diagnosis, the general machine learning algorithm is poor in generalization ability. This paper uses XGBoost method to fit the model and compares it with several common machine learning algorithm performances. The experimental results prove that XGBoost is adopted. It is proved that the method of extracting features add a simple classifier can achieve good results.
作者 孙琛 田晓声 SUN Chen;TIAN Xiao-sheng(School of Electronic,Information and Electrical Engineering,Shanghai Jiaotong University,Shanghai 200240,China;Inspection & Maintenance Company,Shanghai 200333,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2019年第3期378-380,共3页 Journal of Jiamusi University:Natural Science Edition
基金 贵州省科技厅联合资金项目(黔科合LH字7071号,黔科合LH字7019号)
关键词 变压器 故障诊断 机器学习 XGBoost transformer fault diagnosis machine learning XGBoost
  • 相关文献

参考文献4

二级参考文献154

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2张艳,吴玲.基于支持向量机和交叉验证的变压器故障诊断[J].中国电力,2012,45(11):52-55. 被引量:14
  • 3林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 4Breiman L. Bagging Preditors [J].Machine Learning, 1996,24(2).
  • 5Dietterich T. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization [J].Machine Learning, 2000,40(2).
  • 6Ho T K. The Random Subspace Method for Constructing Decision Forests [J].Trans. on Pattern Analysis and Machine Intelligence, 1998,20 (8).
  • 7Amit Y, Gernan D. Shape Quantization and Recognition with Randomized Trees[J]. Neural Computation, 1997,9(7). Breiman L Random Forest[J]. Machine Learning, 2001,45(1).
  • 8Breiman L. Random Forests[J]. Machine Learning, 2001,45(1).
  • 9Tibshirani tL Bias, Variance, and Prediction Error for Classification Rules[C]. Technical Report, Statistics Department, University of Toronto, 1996.
  • 10Wolpert D H, Macready W G. An Efficient Method to Estimate Bagging's Generalization Error[J]. Machine Learning, 1999,35(1).

共引文献1075

同被引文献51

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部