期刊文献+

具有环状结构的离散神经网络的混沌性

Chaos in Discrete Neural Networks of Ring Architecture
下载PDF
导出
摘要 研究一类具有环状结构的延迟离散神经网络的混沌性,通过使用矩阵变换方法,建立具有较好性质的无延迟时间的无穷维等价系统,通过等价系统的性质获得延迟离散神经网络在远离原点区域的一个闭不变集,并证明此神经网络系统在此闭不变集上的子系统与具有两个符号的双边符号动力系统拓扑共轭。从而证明这类具有环状结构的神经网络系统在某种条件下存在Devaney混沌。 In this paper, a delayed discrete Hopfield neural networks of ring architecture is researched, by using the method of matrix transformation, the qualitative infinite dimensional equivalent systems without delay is established. Getting a closed invariant set of delay-discrete neural networks in a region by equivalent system, and proving the neural network system has topological conjugacy with the subsystem in the invariant set above. Thus it can be proved that the discrete neural networks of ring architecture has Devaney chaos under certain conditions.
作者 吴小英 陈员龙 WU Xiao-ying;CHEN Yuan-long(Department of Applied Mathematics, Guangdong University of Finance, Guangzhou 510521, China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2019年第3期492-495,共4页 Journal of Jiamusi University:Natural Science Edition
基金 广东省自然科学基金(2014A030310469,2017A030313037) 广东金融学院2017创新强校工程项目(20170406101)
关键词 DEVANEY混沌 离散神经网络 拓扑共轭 符号动力系统 Devaney's chaos discrete neural networks topological conjugacy symbolic dynamics
  • 相关文献

参考文献1

二级参考文献11

  • 1Aubry S, Abramovici G. Chaotic trajectories in the standard map: the concept of anti-integrability. Phys D, 1990, 43: 199- 219.
  • 2Chen L, Aihara K. Chaotic dynamics of neural networks and its application to combinatorial optimization. Differential Equations Dyn Syst, 2001, 9:139-168.
  • 3Devaney R L. An Introduction to Dynamical Systems. Redwood City: AddisomWesley Publishing Company, 1989.
  • 4Freeman W J. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybernet, 1987, 56.:139-150.
  • 5Hopfield J. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci, 1982, 79:2554-2558.
  • 6Huang Y, Zou X. Co-existence of chaos and stable periodic orbits in a simple discrete neural network. J Nonlinear Sci, 2005, 15:291-303.
  • 7Kaslik E, Balint S. Chaotic dynamics of a delayed discrete-time Hopfield network of two nonidentical neurons with no self-connections. J Nonlinear Sci, 2008, 18:415-432.
  • 8Li M, Malkin M. Topological horseshoes for perturbations of singular difference equations. Nonlinearity, 2006, 16: 795-811.
  • 9Qin W. Chaotic invariant sets of high-dimensional Henon-like maps. J Math Anal Appl, 2001, 264:76-84.
  • 10Wu J, Zhang R. A simple delayed neural network for associative memory with large capacity. Discrete Contin Dyn Syst Ser B, 2004, 4:853-865.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部