期刊文献+

基于Wasserstein距离分层注意力模型的跨域情感分类 被引量:1

Wasserstein Distance Based Hierarchical Attention Model for Cross-Domain Sentiment Classification
下载PDF
导出
摘要 跨领域情感分类任务旨在利用已知情感标签的源域数据对缺乏标记数据的目标域进行情感倾向性分析.文中提出基于Wasserstein距离的分层注意力模型,结合Attention机制,采用分层模型进行特征提取,将Wasserstein距离作为域差异度量方式,通过对抗式训练自动捕获领域共享特征.进一步构造辅助任务捕获与共享特征共现的领域独有特征,结合两种特征表示完成跨域情感分类任务.在亚马逊评论等数据集上的实验表明,文中模型仅利用领域共享特征就达到较高的正确率,在不同的跨领域对之间具有较好的稳定性. The task of cross-domain sentiment classification is to analyze the sentiment orientation of the target domain lacking labeled data using the source-domain data with sentiment labels.A hierarchical attention model based on Wasserstein distance is proposed in this paper.The hierarchical model is used for feature extraction by combining attention mechanism,and Wasserstein distance is used as the domain difference metric to automatically capture the domain-sharing features through adversarial training.Further auxiliary task is constructed to capture the domain-special features cooccurring with domain-sharing features.These two kinds of features are united to complete the cross-domain sentiment classification task.The experimental results on Amazon datasets demonstrate that the proposed model achieves a higher accuracy and a better stability on different cross-domain pairs.
作者 杜永萍 贺萌 赵晓铮 DU Yongping;HE Meng;ZHAO Xiaozheng(Faculty of Information,Beijing University of Technology,Beijing 100124)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2019年第5期446-454,共9页 Pattern Recognition and Artificial Intelligence
基金 国家重点研发计划项目(No.2018YFC1900800) 国家语委信息化项目(No.YB135-89)资助~~
关键词 跨领域情感分类 Wasserstein距离 分层模型 注意力机制 双向门控循环单元 Cross-Domain Sentiment Classification Wasserstein Distance Hierarchical Model Attention Mechanism Bidirectional Gated Recurrent Unit
  • 相关文献

参考文献3

二级参考文献114

  • 1邓卫兵.A LIMITED MEMORY QUASI-NEWTON METHOD FOR LARGE SCALE PROBLEM[J].Numerical Mathematics A Journal of Chinese Universities(English Series),1996,5(1):71-79. 被引量:3
  • 2Du Wei{u, Tan Songbo, Cheng Xueqi, et al. Adapting information bottleneck method for automatic construction of domain oriented sentiment lexicon [C] //Proc of the 3rd ACM Int Con{ on Web Search and Data Mining. New York= ACM, 2010:111-120.
  • 3Bollegala D, Weir D, Carroll J. Cross-Domain sentiment classification using a sentiment sensitive thesaurus [J]. IEEE Trans on Knowledge and Data Engineering, 2013, 25 (8): 1719-1731.
  • 4Pang B, Lee L, Vaithyanathan S. Thumbs up? sentiment classification using machine learning techniques [C]//Proc of the Association of Computational Linguistics Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2002:79-86.
  • 5Yu L C, Wu J L, Chang P C, et al. Using a contextual entropy model to expand emotion words and their intensity for the sentiment classification of stock market news [J]. Knowledge-Based Systems, 2013, 4i: 89-97.
  • 6Zhu Zhu, Dai Darning, Ding Yaxing, et al. Employing emotion keywords to improve cross-domain sentiment classification [G] //LNCS 7717 Chinese Lexical Semantics. Berlin: Springer, 2013 64-71.
  • 7Kaya M, Fidan G, Toroslu I H. Transfer learning using twitter data for improving sentiment classification of turkish political news [G] //LNEE 264: Information Sciences and Systems 2013. Berlin.- Springer, 2013:139-148.
  • 8Jambhulkar P, Nirkhi S. A survey paper on cross-domain sentiment analysis [J]. International Journal of Advanced Research in Computer and Communication Engineering,2014, 3(1): 5241-5245.
  • 9Chawla N V, Bowyer K W, Hail L O, et al. SMOTE: Synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16:321-357.
  • 10Blitzer J, Dredze M, Pereira F. Biographies, bollywood, boum-boxes and blenders: Domain adaptation for sentiment classification [C] //Proc of the 45th Annual Meeting of the Association of Computational Linguistics. Stroudsburg, PA: ACL, 2007:440-447.

共引文献479

同被引文献36

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部