期刊文献+

结合外部知识的动态多层次语义抽取网络模型 被引量:2

Dynamic Multiple-level Semantic Extraction Model Based on External Knowledge
下载PDF
导出
摘要 针对复杂多文本机器阅读理解任务中的语义理解与答案提取问题,提出结合外部知识的动态多层次语义理解与答案抽取模型.首先利用改进的门控单元循环神经网络匹配文本内容与问题集,分别在向量化文本内容及问题集上实施多维度动态双向注意力机制分析,提高语义匹配精度.然后利用动态指针网络确定问题答案范围,改进网络模型语义匹配效率,降低答案提取冗余度.最后结合外部知识与经验改进候选答案精准性排序,得到最终答案.实验表明文中模型的语义匹配与答案提取精度显著提升,对不同领域的复杂文本阅读理解任务具有较高的鲁棒性. To resolve the problems of semantic understanding and answer extraction in complex multiple context machine reading comprehension environments,a dynamic multiple-level semantic extraction model based on external knowledge is presented.Firstly,the optimized gated single cyclic neural network model is utilized to match the text as well as the problem set.Then,the dynamic multiple-dimension bidirectional attention mechanism analysis is implemented on the text and the problem set respectively to improve the semantic matching precision.Next,a dynamic pointer network is utilized to determine the rank of the answers to the questions.Finally,the candidate answers are sorted based on external knowledge and experiences,and the precision of the final answer is improved further.The experimental results show that problem-answer matching accuracy of the proposed model is significantly improved compared with the mainstream models.Furthermore,the proposed model obtains higher robustness in complex reading comprehension tasks in different application scenes.
作者 姜文超 庄志刚 涂旭平 利传杰 刘海波 JIANG Wenchao;ZHUANG Zhigang;TU Xuping;LI Chuanjie;LIU Haibo(School of Computers,Guangdong University of Technology,Guangzhou 510006;Guangdong Electronics Industry Institute,Dongguan 523808;Guangdong Guangxin Communications Services Company Ltd.,Guangzhou 510630)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2019年第5期455-462,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.11601006) 广东省自然科学基金项目(No.2018A030313061) 广东省科技计划项目(No.2017B030305003,2017B010124001,2017B090901005) 广东省协同创新与平台环境建设项目(No.2017A070712016)资助~~
关键词 机器阅读理解(MRC) 语义匹配 动态双向注意力机制 外部知识 Machine Reading Comprehension(MRC) Semantic Matching Dynamic Bidirectional Attention Mechanism External Knowledge
  • 相关文献

同被引文献6

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部