摘要
针对二进制一致性算法扩展性差、经验依赖性强的缺点,提出了一种 N 状态分布式二进制一致性算法。首先,基于Gossip算法的平均一致性思想和轮盘赌思想,更新无线传感器网络状态均值和当前状态均值的偏差程度,计算所有可能更新状态的初始概率分布;然后,利用遗传算法优化初始概率分布,得到准确率较高的最优概率分布。仿真结果表明,在相同状态个数条件下,本文所设计的算法具有更好的准确率和收敛时间。
Given the disadvantages of poor expansibility and strong experience dependence of existing binary consensus algorithms, we propose an N -state distributed binary consensus algorithm. Firstly, based on the idea of average consensus of the Gossip algorithm and the roulette idea, the degree of deviation between the state average of the wireless sensor network and the current state average is updated, and the initial probabilistic distribution of all possible update states is calculated. Secondly, the genetic algorithm is applied to optimize the initial probability distribution and obtain the optimal probability distribution with better accuracy. The results show that the proposed algorithm has higher accuracy and shorter convergence time under the same number of states.
作者
刘华
杨春曦
韩光松
谢可心
LIU Hua;YANG Chun-xi;HAN Guang-song;XIE Ke-xin(Faculty of Chemical Engineering,Kunming University of Science and Technology,Kunming 650500;Joint Operations College,PLA National Defense University,Shijiazhuang 050084,China)
出处
《计算机工程与科学》
CSCD
北大核心
2019年第6期1009-1015,共7页
Computer Engineering & Science
基金
国家自然科学基金(61364002)
关键词
一致性
遗传算法
二进制
优化
consensus
genetic algorithm
binary
optimization