期刊文献+

N状态二进制一致性算法设计及其优化 被引量:3

Design and optimization of an N-state binary consensus algorithm
下载PDF
导出
摘要 针对二进制一致性算法扩展性差、经验依赖性强的缺点,提出了一种 N 状态分布式二进制一致性算法。首先,基于Gossip算法的平均一致性思想和轮盘赌思想,更新无线传感器网络状态均值和当前状态均值的偏差程度,计算所有可能更新状态的初始概率分布;然后,利用遗传算法优化初始概率分布,得到准确率较高的最优概率分布。仿真结果表明,在相同状态个数条件下,本文所设计的算法具有更好的准确率和收敛时间。 Given the disadvantages of poor expansibility and strong experience dependence of existing binary consensus algorithms, we propose an N -state distributed binary consensus algorithm. Firstly, based on the idea of average consensus of the Gossip algorithm and the roulette idea, the degree of deviation between the state average of the wireless sensor network and the current state average is updated, and the initial probabilistic distribution of all possible update states is calculated. Secondly, the genetic algorithm is applied to optimize the initial probability distribution and obtain the optimal probability distribution with better accuracy. The results show that the proposed algorithm has higher accuracy and shorter convergence time under the same number of states.
作者 刘华 杨春曦 韩光松 谢可心 LIU Hua;YANG Chun-xi;HAN Guang-song;XIE Ke-xin(Faculty of Chemical Engineering,Kunming University of Science and Technology,Kunming 650500;Joint Operations College,PLA National Defense University,Shijiazhuang 050084,China)
出处 《计算机工程与科学》 CSCD 北大核心 2019年第6期1009-1015,共7页 Computer Engineering & Science
基金 国家自然科学基金(61364002)
关键词 一致性 遗传算法 二进制 优化 consensus genetic algorithm binary optimization
  • 相关文献

参考文献2

二级参考文献31

  • 1金光,武小悦,高卫斌.卫星地面站资源调度优化模型及启发式算法[J].系统工程与电子技术,2004,26(12):1839-1841. 被引量:39
  • 2刘洋,陈英武,谭跃进.卫星地面站系统任务调度的动态规划方法[J].中国空间科学技术,2005,25(1):44-47. 被引量:24
  • 3张红旗.基于贪婪算法的卫星地面站资源调度方法[J].无线电工程,2010,40(12):4-6. 被引量:7
  • 4Rao B S, Durrant-Whyte H F. Fully decentralised algorithm for multisensor Kalman filtering. IEE Proceedings D: Control Theory and Applications, 1991.138(5): 413-420.
  • 5Reid D B. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854.
  • 6Fox V, Hightower J, Liao L, Schulz D, Borriello G. Bayesian filtering for location estimation. IEEE Pervasive Computing, 2003, 2(3): 24-33.
  • 7Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233.
  • 8Spanos D P, Olfati-Saber R, Murray R M. Dynamic consensus for mobile networks. In: Proceedings of the 16th IFAC World Congress. Pragae, Czech: IFAC, 2005. 1-6.
  • 9Spanos D P, Olfati-Saber R, Murray R M. Approximate distributed Kalman filtering in sensor networks with quantifiable performance. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks. Los Angeles, USA: IEEE, 2005. 133-139.
  • 10Olfati-Saber R. Distributed Kalman filter with embedded consensus filters. In: Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference. Seville, Spain: IEEE, 2005. 8179-8184.

共引文献33

同被引文献32

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部