期刊文献+

基于变量选择的网络直播影响因素分析

Analysis of Influencing Factors in Live Webcast based on Variable Selection
下载PDF
导出
摘要 作为一种新兴的社交媒体,网络直播在近年来的发展愈演愈烈。网络直播何以有如此巨大的发展规模和潜力,有哪些影响因素促进和加速了它的发展?基于子集选择法和系数压缩法的变量选择方法可以对此问题做详细的定量分析以筛选出显著变量。根据数据特征,选定运用Cp准则、AIC准则、BIC准则和LARS、AdaptiveLASSO等方法进行变量选择,通过横向比较变量选择结果得出影响网络直播火爆发展的关键因素,以对网络直播行业提供合理的产业导向信息。 As an emerging social media,webcasting has intensified in recent years.Why does webcasting have such a huge scale of development and potential,and what influence factors have contributed to and accelerated its development?The variable selection method based on the subset selection method and the coefficient compression method can perform detailed quantitative analysis on this problem to screen out significant variables.According to the data characteristics,the Cp criterion,AIC criterion,BIC criterion,LARS,Adaptive LASSO and other methods are selected for variable selection.Through the horizontal comparison of variable selection results,the key factors affecting the rapid development of webcasting are obtained,so as to provide reasonable industry-oriented information for the live broadcast industry.
作者 张亚伦 许明月 邵星铭 吴棣 刘聪 ZHANG Ya-lun;XU Ming-yue;SHAO Xing-ming;WU Di;LIU Cong(School of Statistics,Qufu Normal University,Jining Shandong 273165,China)
出处 《通信技术》 2019年第6期1436-1442,共7页 Communications Technology
基金 大学生创新创业训练计划项目(No.201710446089)~~
关键词 变量选择 子集选择 系数压缩 网络直播 variable selection subset selection coefficient compression live webcast
  • 相关文献

参考文献6

二级参考文献82

  • 1王大荣,张忠占.联合广义线性模型中的变量选择[J].统计研究,2007,24(4):37-40. 被引量:2
  • 2庾月娥,杨元龙.使用与满足理论在网上聊天的体现[J].当代传播,2007(3):94-96. 被引量:28
  • 3刘肖.超越表象:对“娱乐至死”命题的批判性思考[J].新闻界,2007(4):37-39. 被引量:24
  • 4Fan J, Li R. Statistical challenges with high dimensionality: Feature selection in knowledge discovery [A]. In: Sanz-Sole M, Soria J, Varona J L, et al, eds. Proceedings of the International Congress of Mathematicians [C]. Zurich: European Mathematical Society, 2006, 3: 595-622.
  • 5Claeskens G, Hjort N L. Model Selection and Model Averaging [M]. Cambridge University Press, 2008.
  • 6Hocking R R. The analysis and selection of variables in linear regression [J]. Biometrics, 1976, 32: 1-49.
  • 7Guyon I, Elisseeff A. An introduction to variable and feature selection [J]. Journal of Machine Learn- ing Research, 2003, 3: 1157-1182.
  • 8Li X, Xu R. High-Dimensional Data Analysis in Cancer Research [M]. Springer, 2009.
  • 9Hesterberg T, Choi N H, Meier L, Fraley C. Least angle and 11 penalized regression: A review [Jl. Statistics Surveys, 2008, 2: 61-93.
  • 10Fan J, Lv J. A selective overview of variable selection in high dimensional feature space [J]. Statistica Sinica, 2010, 20: 101-148.

共引文献324

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部