期刊文献+

基于概念格的网络设备识别方法

Network Equipment Identification Method based on Concept Lattice
下载PDF
导出
摘要 网络技术正在深度改变经济与社会面貌,网络空间安全的重要性与日俱增。网络设备识别是网络安全策略重要的基础性工作,也是计算机网络研究的热点。识别网络设备的主要手段是探测目标设备开放的端口。探测获取的信息是一类典型的大数据,具有概念繁多、变化迅速和难以量化等特点,这给设备类型识别带来了较大困难。针对上述问题,提出了一种基于概念格的网络设备类型识别方法,可以显著简化识别过程,有效解决了设备差异程度难以量化的问题。 Network technology is profoundly changing the economic and social outlook,and the importance of cyberspace security is increasing.Network equipment identification is an important basic work of network security strategy,and it is also a hotspot of computer network research.The primary means of identifying a network device is to detect the open port of the target device.The information obtained by the detection is a kind of typical big data,which has many characteristics,rapid changes and difficulty in quantification,which brings great difficulty to device type identification.Aiming at the above problems,a recognition method based on concept lattice is proposed,which can significantly simplify the identification process and effectively solve the problem that the degree of device differentiation is difficult to quantify.
作者 孙治 杨慧 张江 陈剑锋 徐锐 SUN Zhi;YANG Hui;ZHANG Jiang;CHEN Jian-feng;XU Rui(Cyberspace Security Key Laboratory of Sichuan Province,Chengdu Sichuan 610041,China;Cyberspace Security Technology Laboratory of CETC,Chengdu Sichuan 610041,China;China Cyber Security,Chengdu Sichuan 610041,China)
出处 《通信技术》 2019年第6期1477-1481,共5页 Communications Technology
基金 国家科技部重点研发计划(No.2016YFB0801301) 四川省科技厅重大专项(党政网络空间安全) 四川省应用基础研究项目(No.2018JY0377)~~
关键词 计算机网络 概念格 设备识别 概念相似 computer network concept lattice equipment identification concept similarity
  • 相关文献

参考文献5

二级参考文献73

  • 1Qin J Z, Yung N H C. Feature fusion within local region usinglocalized maximum-margin learning for scene categorization[J]. Pattern Recognition, 2012, 45(4): 1671-1683.
  • 2Quelhas P, Monay F, Odobez J M, et al. A thousand words in ascene [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 2007, 29(9): 1575-1589.
  • 3Kesorn K, Poslad S. An enhanced bag-of-visual word vectorspace model to represent visual content in athletics images [J].IEEE Transactions on Multimedia, 2012, 14(1): 211-222.
  • 4Fernando B, Fromont E, Muselet D, et al. Supervised learningof Gaussian mixture models for visual vocabulary generation[J]. Pattern Recognition, 2012, 45(2): 897-907.
  • 5Sánchez J, Perronnin F, Mensink T, et al. Image classificationwith the fisher vector: theory and practice [J]. InternationalJournal of Computer Vision, 2013, 105(3): 222-245.
  • 6Wille R. Restructuring lattice theory: an approach based on hierarchiesof concepts [M] // Rival I. Ordered Sets, vol 83.Dordrecht: Reidel, 1982: 445-470.
  • 7Zhang S L, Guo P, Zhang J F, et al. A completeness analysis offrequent weighted concept lattices and their algebraic properties[J]. Data & Knowledge Engineering, 2012, 81/82: 104-117.
  • 8Afonso L, Papa J, Papa L, et al. Automatic visual dictionarygeneration through Optimum-Path Forest clustering [C]//Proceedings of the 19th IEEE International Conference onImage Processing. Los Alamitos: IEEE Computer Society Press,2012: 1897-1900.
  • 9Lowe D G. Object recognition from local scale-invariant features[C] //Proceedings of the 7th IEEE International Conferenceon Computer Vision. Los Alamitos: IEEE Computer SocietyPress, 1999, 2: 1150-1157.
  • 10Lowe D G. Distinctive image features from scale invariantkeypoints [J]. International Journal on Computer Vision, 2004,60(2): 91-110.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部