摘要
本文主要研究一类多物种生物趋化模型在齐次Neumann初边值条件下,证得方程组的解的局部存在性及唯一性。即在光滑且有界边界Ω?n(n≥1),当初值(u10(x),…,uN0(x))∈(C0(Ω))N,w0∈W1,r(Ω)非负,利用Banach空间不动点定理证明解的局部存在性,再利用Gronwall不等式和能量方法证得解的唯一性。
This dissertation is devoted to study the local existence and uniqueness of solutions to a chemotaxis muti-speies system with logistic source, under homogeneous Neumann boundary conditions Ω? n . If the nonnegative initial data ( u 10 (x),…,u N0 (x))∈(C 0(Ω)) N and w 0∈W 1,r (Ω), By the Banach fixed point theorem, we establish the local existence of the solution. By the Gronwall inequality and energy method, we also prove the uniqueness of the local solution.
作者
郭楠楠
GUO Nan-nan(Anyang Institute of Technology, Anyang 455000, China)
出处
《南阳理工学院学报》
2019年第2期125-128,共4页
Journal of Nanyang Institute of Technology
关键词
多物种趋化模型
局部存在
唯一性
multi-species chemotaxis system
local existence
uniqueness