期刊文献+

基于GRU递归神经网络的城市道路超车预测 被引量:5

Overtaking prediction of urban road based on GRU neural network
下载PDF
导出
摘要 城市道路中的超车行为尤其是违规超车等,对交通秩序与安全造成严重影响。随着电子警察与卡口等车牌识别系统的广泛应用,通过上下游车牌识别与时间对比,可以较为精确地获取车辆在路段之间的超车关系。基于电子警察处理的超车数据建立了基于GRU递归神经网络的城市道路超车率预测模型,预测城市道路超车率的变化趋势,并与循环神经网络(recurrent neural network,RNN)、反向传播(back propagation,BP)神经网络进行对比。在苏州工业园区星湖街-现代大道路段的测试结果表明,基于GRU递归网络的超车预测模型的绝对值误差为12.52%,相比于其他2种模型,精度高、泛化能力强、鲁棒性强。 Overtaking behavior in urban roads,especially violations of regulations,has a serious impact on traffic order and safety.With the wide application of the license plate recognition system such as electronic police and bayonet,the overtaking relationship between the road segments can be accurately obtained through the comparison of the upstream and downstream license plate recognition and time.Based on the overtaking data processed by electronic police,this paper establishes a prediction model of overtaking rate on urban roads based on gated recurrent unit(GRU),which is used to predict the trend of overtaking rate on urban roads,and compared with the model of recurrent neural network(RNN)and back propagation(BP)neural network.The test on Xinghu Street-Modern Highway Section in Suzhou Industrial Park shows that the absolute error of the overtaking prediction model based on GRU network is 12.52%,which has higher precision,stronger generalization and robustness compared with the other two models.
作者 王浩 黄美鑫 武志薪 鞠建敏 WANG Hao;HUANG Meixin;WU Zhixin;JU Jianmin(School of Computer Science & Information Engineer, Shanghai Institute of Technology, Shanghai 201418, China)
出处 《中国科技论文》 CAS 北大核心 2019年第3期285-290,共6页 China Sciencepaper
关键词 深度递归神经网络 神经网络 超车预测 交通安全 gated recurrent unit(GRU) neural network overtaking prediction traffic safety
  • 相关文献

参考文献5

二级参考文献36

  • 1王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:339
  • 2金立生,王荣本,纪寿文,郭烈.智能车辆自主导航神经网络控制器设计[J].农业机械学报,2005,36(10):30-33. 被引量:7
  • 3刘江,田萍,荣建,任福田.驾驶员气质与行车速度关系的初步研究[J].北京工业大学学报,2006,32(1):27-32. 被引量:19
  • 4王荣本,张荣辉,储江伟,游峰.区域交通智能车辆控制器优化设计和品质分析[J].农业机械学报,2007,38(1):22-25. 被引量:10
  • 5Jenkins J M,Rilett L R.Classifying passing maneuvers:a behavioral approach[C].In Transportation Research Record:Journal of the Transportation Research Record,No 1403.Washington,D C,TRB,National Research Council,2005.
  • 6Melody D M,Crux F S.Developing a practical design guide for passing lanes on no-passing zones of two lane rural highways[C].Transportation Research Board 84th Annual Meeting,No 1934,TRB,National Research Council,Washington,DC,2005.
  • 7Jenkins J M,Rilett L R.Classifying passing maneuver:a behavioral approach[C].In Transportation Research Board 84th Annual Meeting,No 1403,TRB,National Research Council,Washington,D C,2005.
  • 8Breewer M A,Wooldridge M D.Signing for passing lane sections on two-lane rural roadways in texas[C].TRB 82nd Annual Meeting,No 1928,Washington,D C,2003.
  • 9Greenshields B D,Dickinson H C,Conner C N,et al.Distance and time required to overtake and pass cars[C].Highway Research Board Proceedings.TRB,National Research Council,Washington,D C,No 1935.
  • 10John A D,Harwood D W.TWOPAS Programmer's Guide[M].Midwest Research Institute:Federal Highway Administration,1986.

共引文献104

同被引文献55

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部