摘要
针对时空众包在线任务分配问题,提出任务范围调节算法DMRA与基于预测分析的在线任务分配算法PAMA。DMRA算法以任务位置为中心,根据工人密度动态调整任务的范围。PAMA算法基于历史统计概率,采用贝叶斯分类器预测下一时间戳的对象分布情况,在此基础上,执行带权二分图最优匹配算法以完成任务分配。实验结果表明,将DMRA算法与PAMA算法相结合,能够提升任务分配的总效用,降低工人的差旅成本,任务分配性能优于贪心算法与随机阈值算法。
Aiming at online task allocation problem of spatiotemporal crowdsourcing,a task range adjustment algorithm DMRA and an online task allocation algorithm PAMA based on predictive analysis are proposed.The DMRA algorithm takes task location as the center and dynamically adjusts the range of tasks according to worker density.The PAMA algorithm uses Bayesian classifier to predict the distribution of the next timestamp object based on historical statistical probability.On this basis,the weighted bipartite graph optimal matching algorithm is executed to complete the task allocation.Experimental results show that the combination of DMRA algorithm and PAMA algorithm can improve the total utility of task allocation and reduce the travel cost of workers,and the performance of task allocation is better than that of greedy algorithm and random threshold algorithm.
作者
张兴盛
余敦辉
聂茜婵
袁旭
ZHANG Xingsheng;YU Dunhui;NIE Xichan;YUAN Xu(School of Computer Science and Information Engineering,Hubei University,Wuhan 430062,China;Hubei Provincial Engineering Technology Research Center for Education Informatization,Wuhan 430062,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2019年第6期67-74,共8页
Computer Engineering
基金
国家重点研发计划(2017YFB1400602)
国家自然科学基金(61572371,61832014)
湖北省技术创新重大专项(2018ACA13)
关键词
时空众包
在线任务分配
分配总效用
工人差旅成本
贝叶斯分类预测
统计预测
spatiotemporal crowdsourcing
online task allocation
total utility of allocation
travel cost of workers
Bayesian classification prediction
statistical prediction