摘要
针对实现遥感图像中船只目标的快速检测提出了一个采用多光谱图像、基于级联的卷积神经网络(CNN)船只检测方法CCNet.该方法所采用两级级联的CNN依次实现感兴趣区域(ROI)的快速搜索、基于感兴趣区域的船只目标定位和分割.同时采用含有更多细节信息的多光谱图像作为 CCNet 的输入能够提升网络提取特征鲁棒性从而使得检测更加精确.基于 SPOT 6 卫星多光谱图像的实验表明与当前主流的深度学习船只检测方法相比该方法能够在实现高检测精准度的基础上将检测速度提高 5 倍以上.
A novel ship detection method using cascaded convolutional neural network ( CCNet) with multispectral image is proposed to achieve high-speed detection. The CCNet employs two cascaded convolutional neural networks ( CNN) for extracting regions of interest ( ROIs),locating and segmenting ship objects sequentially. Benefit from the abundant details of the multispectral image,CCNet can extract more robust feature for achieving more accurate detection. The efficiency of CCNet has been validated by the experiments on the SPOT 6 satellite multispectral images. Compared with the state-of-the-art deep-learning-based ship detection algorithms,the proposed ship detection algorithm accelerates the processing by more than 5 times with a higher detection accuracy.
作者
张忠星
李鸿龙
张广乾
朱文平
刘力源
刘剑
吴南健
ZHANG Zhong-Xing;LI Hong-Long;ZHANG Guang-Qian;ZHU Wen-Ping;LIU Li-Yuan;LIU Jian;WU Nan-Jian(State Key Laboratory of Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;Center for Excellence in Brain Science and Intelligence Technology,Chinese Academy of Sciences,Beijing 100083,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《红外与毫米波学报》
SCIE
EI
CAS
CSCD
北大核心
2019年第3期290-295,共6页
Journal of Infrared and Millimeter Waves
基金
supported by The National Key Research and Development Program of China(Grant No.2016YFA0202200)
National Natural Science Foundation of China(Grant Nos.61434004,61234003)
National Natural Science Foundation for the Youth of China(61504141,61704167)
National Key R&D Program of Beijing(Z181100008918009)
Youth Innovation Promotion Association Program,Chinese Academy of Sciences(No.2016107)
关键词
船只检测
遥感图像处理
卷积神经网络
多光谱图像
ship detection
remote image processing
convolutional neural network
multispectral image