期刊文献+

基于自然语言处理的蛋白质小分子亲和力值预测 被引量:2

Protein Small Molecule Affinity Prediction Based on Natural Language Processing
下载PDF
导出
摘要 蛋白质与小分子的相互作用研究对药物的研发非常重要,而现有的蛋白质小分子亲和力值的预测方法存在成本高、精度低等问题.为此提出了一种新的蛋白质小分子亲和力值的预测方法,利用自然语言处理技术对蛋白质结构数据与小分子指纹数据进行处理,并利用梯度提升决策树模型进行预测.实验表明,该方法的精度较原有方案有较大提高. The interaction between proteins and small molecules plays a very important role in drug research and development. However, the existing methods for predicting the affinity of small molecules have some problems, such as high cost and low accuracy. In this paper, a new protein small molecule affinity prediction method is proposed based on natural language processing(NLP) technology, which using NLP to analysis the protein structure data and small molecule fingerprint data, as well as using gradient boosting decision tree(GBDT) model to predict the affinity. Experiments show that the proposed method has performance over the exiting methods in terms of accuracy.
作者 欧阳志友 陈晨 王愉茜 陈金刚 殷昭 周青松 OUYANG Zhiyou;CHEN Chen;WANG Yuqian;CHEN Jingang;YIN Zhao;ZHOU Qingsong(Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;School of Economics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;School of Petroleum Engineering, China University of Petroleum, Qingdao 266580, Shandong Province, China;Department of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)
出处 《应用科学学报》 CAS CSCD 北大核心 2019年第3期327-335,共9页 Journal of Applied Sciences
基金 国家自然科学基金(No.61533010)资助
关键词 自然语言处理 蛋白质小分子亲和力值 机器学习 梯度提升决策树 natural language processing protein small molecule affinity value machine learning gradient boosting decision tree(GBDT)
  • 相关文献

参考文献4

二级参考文献39

共引文献224

同被引文献26

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部