期刊文献+

关于LLE算法的监督型参数设置方法及应用 被引量:1

The method and application of supervised parameter setting of LLE algorithm
下载PDF
导出
摘要 采用局部线性嵌入(Locally Linear Embedding,LLE)算法进行数据降维时,不仅能保持数据分布的局部线性特征,同时还能保存数据分布的流形结构,因此该算法常用于高光谱影像的数据降维。其中,关于最近邻像元个数K的设置是执行该算法的关键。然而,关于K值的设置,目前尚无一个行之有效的方案。针对这一问题,文中基于监督型特征提取的思想,从"线性预测误差均值最小化"的角度出发,提出了一个监督型参数设置方法。同时,为了验证该方法的可行性和优越性,结合两个实验区Hyperion影像关于第26至57波段包含的32维光谱数据,进行了降维实验。最后,通过分析对比实验结果,证明了:采用LLE算法进行高光谱影像数据降维时,若依据文中所提方法设置的K值,能获得噪声点少且地物细节信息更加丰富的低维影像数据。 When the Locally Linear Embedding( Locally Linear Embedding,LLE) algorithm was used to reduce the dimension of data,not only the local linear characteristics but also the manifold structure about distribution of data could be preserved. So this algorithm had been often used to reduce the dimension of data on hyperspectral imagery consequently. Among them,the setting of the nearest neighbor pixel number K is the key to executing the algorithm. However there is no effective scheme for setting K currently. Aim at this problem,based on the principle of supervised feature extraction,a supervised method of setting parameter was proposed in this paper from the perspective of "minimizing the mean of linear prediction error". Meanwhile,in order to verify the feasibility and superiority of the proposed method,the experiments on data dimension reduction were carried out by combining the 32 D spectral data( i. e. from the 26 th band to the 57 th band) on Hyperion imagery of two experimental areas. Finally,by analyzing and comparing the experimental results,it showed that: According to the K which is set by using the proposed method in this paper,the low-dimensional imagery with less noise points and more abundant cultural details could be obtained by using LLE algorithm to reduce the dimension of spectral data on hyperspectral imagery.
作者 孙小丹 SUN Xiao-dan(Fuzhou Vocational and Technical College, Fuzhou 350108,China)
出处 《信息技术》 2019年第6期72-76,共5页 Information Technology
基金 福建省教育厅科研项目(JAT171060) 福建省自然科学基金项目(2015J01627)
关键词 局部线性嵌入算法 最近邻像元个数 监督型参数设置方法 数据降维 locally linear embedding algorithm number of the nearest neighbor pixels supervised method of setting parameter dimensional reduction on data
  • 相关文献

参考文献3

二级参考文献38

共引文献140

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部