期刊文献+

基于用户习惯偏好相似度的Slope One推荐算法 被引量:1

A Novel Recommendation Algorithm with Slope One Based on User Preference Similarity
下载PDF
导出
摘要 数据稀疏是协同过滤预测精度的一个重要影响因素。Slope One算法使用简单的线性回归模型解决该问题,但它只使用评分数据做计算,未考虑相似性。提出一种基于用户习惯偏好相似度的Slope One算法(UPS Slope One)。UPS Slop eOne首先基于用户习惯偏好聚类,得到三组不同偏好的用户,然后分别计算各组评分偏差,计算时将用户习惯偏好相似度融入其中,最后使用线性回归模型预测评分。在MovieLens数据集上的实验表明,该算法可得到更高的推荐质量、预测准确性和稳定性。 Data sparsity is a main factor affecting the prediction accuracy of collaborative filtering. Slope One algorithm uses simple lin-ear regression model to solve this problem. It uses rating data to do calculation without considering the similarity. In this paper,we pro-posed an improved Slope One algorithm based on user preference similarity. First,we obtain three groups of users with different prefer-ences based on the user preference clustering,and then calculate the deviation of each group,we add the user preference similarity to deviation calculation,finally use linear regression model to predict the rating. Experiments on the MovieLens data set show that the pro-posed algorithm can achieve better recommendation quality and prediction accuracy. Meanwhile,the stability of the algorithm is also relatively satisfying.
作者 杨嫘 YANG Lei(Lijiang College of Guangxi Normal University,Guilin 541006,China)
出处 《软件导刊》 2019年第6期65-69,共5页 Software Guide
基金 广西壮族自治区青年教师基础能力提升项目(2017KY1327) 广西师范大学漓江学院科研项目(2017)
关键词 推荐系统 用户习惯偏好 SLOPE ONE 相似性度量 recommender systems user preference Slope One similarity measure
  • 相关文献

参考文献3

二级参考文献27

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Goldberg D,Nichols D,Oki B,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
  • 3Resnick P,Iacovou N,Suchak M,Bergstorm P,Riedl J.GroupLens:An open architecture for collaborative filtering of netnews//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work.Chapel Hill,North Carolina,United States,1994:175-186.
  • 4Shardanand U,Maes P.Social information filtering:Algorithms for automating "word of mouth"//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:210-217.
  • 5Hill M,Stead L,Furnas G.Recommending and evaluating choices in a virtual community of use//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.Denver,Colorado,United States,1995:194-201.
  • 6Sarwar B M,Karypis G,Konstan J A,Riedl J.Application of dimensionality reduction in recommender system-A case study//Proceedings of the ACM WebKDD Web Mining for E-Commerce Workshop.Boston,MA,United States,2000:82-90.
  • 7Massa P,Avesani P.Trust-aware collaborative filtering for recommender systems.Lecture Notes in Computer Science,2004,3290:492-508.
  • 8Vincent S-Z,Boi Faltings.Using hierarchical clustering for learning the ontologies used in recommendation systems//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:599-608.
  • 9Park S-T,Pennock D M.Applying collaborative filtering techniques to movie search for better ranking and browsing//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,California,United States,2007:550-559.
  • 10Tomoharu I,Kazumi S,Takeshi Y.Modeling user behavior in recommender systems based on maximum entropy//Proceedings of the 16th International Conference on World Wide Web.Banff,Alberta,Canada,2007:1281-1282.

共引文献242

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部