摘要
LTAG技术是石科院开发的将催化裂化劣质柴油转化为高辛烷值汽油或轻质芳烃的技术,该技术利用加氢单元和催化裂化组合,将催化柴油(LCO)中双环以上芳烃加氢饱和为单环芳烃或环烷烃,再进行催化裂化,实现最大化生产高辛烷值汽油,柴油经过加氢装置LTAG工艺加氢处理后作为催化裂化装置原料,柴油转化为汽油,显著改善了产品分布,经济效益显著;MIP工艺分两个反应区,热原料油与热再生催化剂在提升管底部接触,然后进入第一反应区,经高温和短时间接触后,进入第二反应区(扩径的提升管反应器),在较低的温度和较长的油气停留时间下油气继续反应;MIP重油反应器与LTAG双提升管反应器共用一个再生器组合工艺,极大地节省了空间与投资,但开工与操作相对于普通单提升管催化装置难度较大。文章分析了重油催化裂化与LTAG组合工艺在开工过程中遇到的问题以及运行初期生产状况及产品情况。
LTAG technology was developed by Ripp to convert inferior FCC diesel oil to high octane gasoline or light aromatics. This technology, a combination of hydrogenation and FCC, can hydrogenate dicyclic or polycyclic aromatics in LCO into monocylic aromatics or cycloalkanes that then are cracked to maximize high-octane gasoline. Diesel oil is hydrotreated by LTAG technology into a feedstock for FCCU. This way it can significantly improve the product mix and economic benefit by converting diesel oil into gasoline. The MIP process is divided into two reaction zones. The hot feed oil and the hot regenerated catalyst contact at the bottom of the riser, and then enter the first reaction zone. MIP heavy oil reactor and LTAG double riser reactor in the combined process share one regenerator, which greatly saves space and investment. However, compared with ordinary single riser FCCU, it is more difficult to startup and run, with heavy workloads. In this paper, the issues encountered in the startup and initial running of the combined heavy oil FCC/LTAG process are analyzed.
作者
李兆贤
Li Zhaoxian(Sinopec Jinan Company,Jinan Shandong 250101,China)
出处
《石油石化绿色低碳》
2019年第3期32-36,共5页
Green Petroleum & Petrochemicals