期刊文献+

单晶γ-TiAl合金纳米切削过程的分子动力学模拟 被引量:11

Molecular Dynamics Simulations of Single Crystal γ-TiAl Alloy in Nanometric Cutting Process
原文传递
导出
摘要 采用分子动力学方法研究单晶γ-TiAl合金纳米切削过程,通过对单晶γ-TiAl合金的建模、计算和分析,讨论了不同切削深度和切削速度对切削过程的影响,结果发现:在切削过程中,随着切削深度的增大,切屑体积逐渐增大,切屑中原子排列越来越紧密,位错密度也会随之增大;但随着切削速度的增大,位错密度反而会随之降低。在一定的切削深度和切削速度范围内,切削过程中刀具前方都会产生“V”型位错环,工件的温度和势能也都会相应的增大。特别是,当切削速度为400 m/s时,刀具前方的切削表面上未出现原子错排。 Molecular dynamics simulations were employed to study the nanometric machining process of single crystal γ-TiAl alloy.The influences of different cutting speeds and cutting depths on nanometric cutting process of single crystal γ-TiAl alloy were discussed by molecular dynamics modeling,calculation and analysis.The results show that the accumulated volume of chips increases with the cutting depth increasing in nano-cutting process;at the same time the atoms in the chip stack are tighter and the dislocation density is increased.However,the dislocation density is decreased with the cutting speed increasing.In a certain range of cutting depth and speed,in front of the tool will produce "V"-type dislocation ring of the cutting process,and the temperature and potential energy of the workpiece will increase correspondingly.When the cutting speed is 400 m/s,in particular,there is no atomic misalignment on the cutting surface in front of the tool.
作者 冯瑞成 乔海洋 朱宗孝 李海燕 闫峰 宋文渊 Feng Ruicheng;Qiao Haiyang;Zhu Zongxiao;Li Haiyan;Yan Feng;Song Wenyuan(School of Mechanical and Electronical Engineering,Lanzhou University of Technology,Lanzhou 730050,China;Key Laboratory of Digital Manufacturing Technology and Application,Ministry of Education,Lanzhou 730050,China)
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2019年第5期1559-1566,共8页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51665030) 长江学者和创新团队发展计划(IRT_15R30)
关键词 单晶γ-TiAl合金 纳米切削 分子动力学 位错 single crystal γ-TiAl alloy nanometric cutting molecular dynamics dislocation
  • 相关文献

参考文献1

二级参考文献2

共引文献6

同被引文献43

引证文献11

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部