期刊文献+

选择性激光熔化制备纯钨的性能研究 被引量:4

Properties of Pure Tungsten Produced by Selective Laser Melting
原文传递
导出
摘要 以粒度集中的纯钨粉末为原料,通过选择性激光熔化技术(selective laser melting, SLM)制备样品,分别经过1000, 1400及1960℃的热处理2 h。研究不同相对密度和不同热处理后样品的力学性能和显微组织,并采用X射线衍射(XRD)表征其微观结构。结果表明:纯钨样品的相对密度处于75%~95%之间,其抗弯强度和显微硬度随相对密度的增加而增大,显微组织大体相似。经不同高温处理后,在1400℃处理后样品达到了最佳的力学性能,1960℃处理后样品的晶粒发生了明显的长大现象,材料力学性能降低。XRD图谱结果表明,SLM制得样品及经过1960℃烧结后,其晶体结构并未发生改变。 Pure tungsten powder with intensively distributed particle size was processed to different samples by selective laser melting (SLM).Then,the samples were heat-treated at temperatures of 1000 ℃,1400 ℃ and 1960 ℃ for 2 h.The mechanical property and microstructure of the samples with different densities and different heat treatment temperatures were studied.The morphology and microstructure were characterized by SEM and XRD,respectively.Results show that the density ratios of the pure tungsten sample vary from 75% to 95%.Bending strength and microhardness increase with the rise of the density,but the microstructure difference between these samples is not obvious.After the heat treatment at different temperatures,the mechanical property of the sample after 1400 ℃ treatment is better than those of other samples.Under 1960 ℃ heat treatment,the grain size of pure tungsten sample rises,thus leading to the decrease of mechanical property.The XRD result demonstrates that the grain structure of the pure tungsten sample does not change after 1960 ℃ heat treatment.
作者 张梦晗 姜国圣 王鹏为 蒋靖宇 吴化波 Zhang Menghan;Jiang Guosheng;Wang Pengwei;Jiang Jingyu;Wu Huabo(Central South University,Changsha 410083,China;Hunan Farsoon High-Technology Co.,Ltd,Changsha 410205,China)
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2019年第5期1645-1650,共6页 Rare Metal Materials and Engineering
关键词 选择性激光熔化(SLM) 高温处理 力学性能 显微组织 tungsten selective laser melting (SLM) heat treatment mechanical property microscopic structure
  • 相关文献

参考文献6

二级参考文献78

  • 1徐桂兰.固溶渗铜──两相合金的研究[J].中国钼业,1995,19(1):10-13. 被引量:3
  • 2[2]GERMAN R M.A model for the thermal properties of liquid-phase sintered composites[J].Metallurgical Transaction A,1993,24(8):1745-1752.
  • 3[3]WANG W F.Effect of tungsten particle size and copper content on working behaviour of W-Cu alloy electrodes during electrode discharge machining[J].Powder Metallurgy,1997,40(4):295-300.
  • 4[4]WANG W S,HWANG K S.The effect of tungsten particle size on the processing and properties of infiltrated W-Cu compacts[J].Metallurgical and Materials Transactions A,1998,29A:1509-1515.
  • 5[5]JOHNSON J L,Brezovsky J J,German R M.Effect of tungsten particle size and copper content on densification of liquid-phase-sintered W-Cu[J].Metallurgical and Materials Transactions A,2005,36A:2807-2814.
  • 6[7]LEE Young-jung,LEE Byung-hoon,KIM Gil-su,et al.Evaluation of conductivity in W-Cu composites through the estimation of topological microstmctures[J].Materials Letters,2006,60(16):2000-2003.
  • 7黄乾尧 李汉康.高温合金[M].北京:冶金工业出版社,2002.24.
  • 8Yang Bin, German R M. In: Lall Chaman, Neupaver Albert J eds. Advances in Powder Metallurgy and Particulate Materials[C], Princeton: NJ, MPIF-APMI, 1994, 5:317.
  • 9Yin Stepnen W H. Tungsten[M]. New York: Plenum Press,1979:178.
  • 10Huang Peiyun(黄培云).粉末冶金原理[M].Beijing:Metallurgical Industry Press,1982.

共引文献145

同被引文献39

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部