摘要
High-level efficiency and safety are of great significance for improving the fighting capability of an aircraft carrier. One way to enhance efficiency and safety level is to organize the carrier aircraft into combat effectively. This paper studies the mission planning problem for a team of carrier aircraft launching, and a novel distributed mission planning architecture is proposed. The architecture is hierarchical and is comprised of four levels, namely, the input level, the coordination level,the path planning level and the execution level. Realistic constraints in each level of the distributed architecture, such as the vortex flow effect, the crowd effect and the motion of aircraft, are considered in the model. To solve this problem, a distributed path planning algorithm based on the asynchronous planning strategy is developed. The proposed Mission Planning Approach for Carrier Aircraft Launching(MPACAL) is validated using the setups of the Nimitz-class aircraft carrier.Compared to the isolated planning architecture and the centralized planning architecture, the proposed distributed planning architecture has advantages in coordinating the launch tasks not only belonging to the same catapult but also when all different catapults are considered. The proposed MPACAL provides a modeling method for the flight deck operation on aircraft carrier.
High-level efficiency and safety are of great significance for improving the fighting capability of an aircraft carrier. One way to enhance efficiency and safety level is to organize the carrier aircraft into combat effectively. This paper studies the mission planning problem for a team of carrier aircraft launching, and a novel distributed mission planning architecture is proposed. The architecture is hierarchical and is comprised of four levels, namely, the input level, the coordination level,the path planning level and the execution level. Realistic constraints in each level of the distributed architecture, such as the vortex flow effect, the crowd effect and the motion of aircraft, are considered in the model. To solve this problem, a distributed path planning algorithm based on the asynchronous planning strategy is developed. The proposed Mission Planning Approach for Carrier Aircraft Launching(MPACAL) is validated using the setups of the Nimitz-class aircraft carrier.Compared to the isolated planning architecture and the centralized planning architecture, the proposed distributed planning architecture has advantages in coordinating the launch tasks not only belonging to the same catapult but also when all different catapults are considered. The proposed MPACAL provides a modeling method for the flight deck operation on aircraft carrier.