期刊文献+

基于桥连接的词典学习方法的语义解析 被引量:2

A Bridge-based Lexicon Learning Method for Semantic Parsing
下载PDF
导出
摘要 现阶段的语义解析方法大部分都基于组合语义,这类方法的核心就是词典。词典是词汇的集合,词汇定义了自然语言句子中词语到知识库本体中谓词的映射。语义解析一直面临着词典中词汇覆盖度不够的问题。针对此问题,该文在现有工作的基础上,提出了基于桥连接的词典学习方法,该方法能够在训练中自动引入新的词汇并加以学习,为了进一步提高新学习到的词汇的准确度,该文设计了新的词语—二元谓词的特征模板,并使用基于投票机制的核心词典获取方法。该文在两个公开数据集(WebQuestions和Free917)上进行了对比实验,实验结果表明,该文方法能够学习到新的词汇,提高词汇的覆盖度,进而提升语义解析系统的性能,特别是召回率。 Current Semantic Parsers are mainly based on compositional semantics,with a strong dependent on lexicon. Lexicon is a set of vocabularies,which define the mappings between words or phrases from natural language sentences and predicates from knowledge base ontology. In order to deal with the low-coverage of lexicon.this paper proposes a bridge based lexicon learning method for semantic parsing on the basis of existing work. This method can bring in new vocabularies during training and learn a new lexicon with high-coverage. Furthermore,this paper designs a new word-predicate feature template and utilizes voting to gain core vocabularies for more accurate lexicon. Experiments results on two benchmarks: WebQuestions and Free917 , show that our method can learn new vocabularies for improving the coverage of lexicon, with a side-effect on parsing improvement.
作者 陈波 孙乐 韩先培 CHEN Bo;SUN Le;HAN Xianpei(Chinese Informatoin Processing Laboratory,Institute of Software,Chinese Academy of Sciences,Bejing,100190,China)
出处 《中文信息学报》 CSCD 北大核心 2019年第5期24-30,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金(61433015 61572477)
关键词 语义解析 词典学习 组合语义 覆盖度 semantic parsing lexicon learning compositional semantics coverage
  • 相关文献

参考文献1

二级参考文献19

  • 1张连蓬,储美华,刘国林,江涛.车载智能地理信息查询系统及其自然语言接口[J].现代测绘,2005,28(1):20-22. 被引量:1
  • 2S Mador-Haim,Y Winter,A Braun.Controlled language for geographical information system queries[C] //Proceedings of Inference in Computational Semantics,2006.
  • 3R J Kate,Y W Wong,R J Mooney.Learning to transform natural to formal languages[C] //Proceedings of AAAI,2005:1062-1068.
  • 4Y W Wong,R J Mooney.Learning for semantic parsing with statistical machine translation[C] //Proceedings of the HLT-NAACL,2006:439-446.
  • 5Wei Lu,Hwee Tou Ng,Wee Sun Lee,Luke S.Zettlemoyer.A Generative Model for Parsing Natural Language to Meaning Representations[C] //Proceedings of EMNLP,2008:913-920.
  • 6Tom Kwiatkowski,Luke Zettlemoyer,Sharon Goldwater,Mark Steedman.Inducing probabilistic CCG grammars from logical form with higher-order unification[C] //Proceeding of EMNLP,2010:1223-1233.
  • 7John M.Zelle,Raymond J.Mooney.Learning to parse database queries using inductive logic programming[C] //Proceedings of AAAI,1996:1050-1055.
  • 8C N J Yu,T Joachims.Learning structural svms with latent variables[C] //Proceedings of ICML,2009.
  • 9Junsheng Zhou,Juhong Xu,Weiguang Qu.Efficient Latent Structural Perceptron with Hybrid Trees for Semantic Parsin[C] //Proceedings of the IJCAI,2013:2246-2252.
  • 10Michael Collins.Discriminative training methods for hidden Markov models:Theory and experiments with perceptron algorithms[C] //Proceeding of EMNLP,2002.

共引文献4

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部