期刊文献+

GO改性ZnO/CeO_2复合纳米光催化剂的制备及其光催化性能研究 被引量:3

Preparation and property of GO modified ZnO/CeO_2 nanocomposite photocatalyst
下载PDF
导出
摘要 以改进Hummers法制得的氧化石墨烯(GO)为原料,采用溶胶-凝胶法成功合成GO改性氧化锌(ZnO)/二氧化铈(CeO_2)(ZnO/CeO_2)复合纳米光催化剂,并对产物的结构、组成及其形貌进行了表征,并以刚果红(CR)为目标降解污染物,考察了不同配合比的产物在紫外光照射下的光催化性能。研究结果表明:在CeO_2与ZnO摩尔配合比为1∶50,GO用量为0.8g,GO改性ZnO/CeO_2复合纳米光催化剂的用量为1.0g/L,pH=10,反应120min条件下,GO改性ZnO/CeO_2复合纳米光催化剂对100mL(50mg/L)CR的降解率高达94.12%。与相同条件下ZnO/CeO_2复合纳米材料相比,GO改性ZnO/CeO_2复合纳米光催化剂的光催化性能得到了明显提高。 Graphene oxide(GO)modified ZnO/CeO2 nanocomposites with excellent photocatalytic performances were successfully synthesized by a facile sol-gel method utilizing GO sheets as raw materials acquired by modified Hummers’method.The structure,composition and morphology of samples were characterized.The photocatalytic degradation properties of ZnO/CeO2 modified by GO with different addition ratios were examined under UV irradiation applying congo red(CR)dye as model pollutant.The results showed that the composites displayed an enhanced photocatalytic capability in the degradation of CR dye as compared with ZnO/CeO2 nanocomposites under the same conditions.Under the optimum conditions,the optimal pH was 10,the molar ratio of cerium oxide to zinc oxide was 1∶50,GO was 0.8 g,catalyst loading was 1.0 g/L,and the degradation rate of 100 mL(50 mg/L)CR dye with GO modified ZnO/CeO2 under UV light irradiation was up to 94.12%.
作者 邓雪莹 李丽华 张金生 吴限 马诚 Deng Xueying;Li Lihua;Zhang Jinsheng;Wu Xian;Ma Cheng(College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University,Fushun 113001;The Key Laboratory of Weak Light Nonlinear Photonics,Ministry of Education,Nankai Universi ty,Tianjin 300457)
出处 《化工新型材料》 CAS CSCD 北大核心 2019年第5期185-189,共5页 New Chemical Materials
基金 辽宁省自然科学基金(20092181) 中央高校基本科研业务费专项基金 弱光非线性光子学教育部重点实验室(南开大学)开放基金项目(OS18-2)
关键词 氧化石墨烯 氧化锌 二氧化铈 光催化 刚果红 GO ZnO CeO2 photocatalysis congo red
  • 相关文献

参考文献3

二级参考文献40

  • 1刘洋,尚静.Ag/TiO_2,Pd/TiO_2和TiO_2对庚烷的光催化氧化活性[J].北京联合大学学报,2005,19(4):46-49. 被引量:2
  • 2Novoselov K S,Geim A K,Morozov S V,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306:666-669.
  • 3Zhang Y,Tan Y W,Stormer H L,et al.Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene[J].Nature,2005,438:201-204.
  • 4Stankovich S,Dikin D A,Dommett G H B,et al.Graphene-based Composite Materials[J].Nature,2006,442:282-286.
  • 5Geim A K,Novoselov K S.The Rise of Graphene[J].Nat.Mater.,2007,6:183-191.
  • 6Li D,Kaner R B.Graphene-based Materials[J].Science,2008,320:1 170-1 171.
  • 7Wang G,Yang J,Park J,et al.Facile Synthesis and Characterization of Graphene Nanosheets[J].J.Phys.Chem.C,2008,112:8 192-8 195.
  • 8Li D,Müller M B,Gilje S,et al.Processable Aqueous Dispersions of Graphene Nanosheets[J].Nat.Nanotechnol.,2008,3:101-105.
  • 9Wu Z S,Wang D W,Ren W,et al.Anchoring Hydrous Ru O2 on Graphene Sheets for High-performance Electrochemical Capacitors[J].Adv.Funct.Mater.,2010,20:3 595-3 602.
  • 10Chen S,Zhu J,Wu X,et al.Graphene Oxide-Mn O2 Nanocomposites for Supercapacitors[J].ACS Nano.,2010,4:2 822-2 830.

共引文献9

同被引文献12

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部