期刊文献+

Advances on strategies for searching for next generation thermal barrier coating materials 被引量:24

原文传递
导出
摘要 Thermal barrier coating(TBC) materials play important roles in gas turbine engines to protect the Nibased super-alloys from the high temperature airflow damage. High melting point, ultra-low thermal conductivity, large thermal expansion coefficient, excellent damage tolerance and moderate mechanical properties are the main requirements of promising TBC materials. In order to improve the efficiency of jet and/or gas turbine engines, which is the key of improved thrust-to-weight ratios and the energysaving, significant efforts have been made on searching for enhanced TBC materials. Theoretically, density functional theory has been successfully used in scanning the structure and properties of materials, and at the same time predicting the mechanical and thermal properties of promising TBC materials for high and ultrahigh temperature applications, which are validated by subsequent experiments. Experimentally,doping and/or alloying are also widely applied to further decrease their thermal conductivities. Now, the strategy through combining theoretical calculations and experiments on searching for next generation thermal insulator materials is widely adopted. In this review, the common used techniques and the recent advantages on searching for promising TBC materials in both theory and experiments are summarized. Thermal barrier coating(TBC) materials play important roles in gas turbine engines to protect the Nibased super-alloys from the high temperature airflow damage. High melting point, ultra-low thermal conductivity, large thermal expansion coefficient, excellent damage tolerance and moderate mechanical properties are the main requirements of promising TBC materials. In order to improve the efficiency of jet and/or gas turbine engines, which is the key of improved thrust-to-weight ratios and the energysaving, significant efforts have been made on searching for enhanced TBC materials. Theoretically, density functional theory has been successfully used in scanning the structure and properties of materials, and at the same time predicting the mechanical and thermal properties of promising TBC materials for high and ultrahigh temperature applications, which are validated by subsequent experiments. Experimentally,doping and/or alloying are also widely applied to further decrease their thermal conductivities. Now, the strategy through combining theoretical calculations and experiments on searching for next generation thermal insulator materials is widely adopted. In this review, the common used techniques and the recent advantages on searching for promising TBC materials in both theory and experiments are summarized.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第5期833-851,共19页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China (No. 51602188) the Program for Professor of Special Appointment (Eastern Scholar) by Shanghai Municipal Education Commission (No. TP2015040)
关键词 THERMAL BARRIER coatings Oxide First PRINCIPLES calculation THERMAL PROPERTIES Mechanical PROPERTIES Thermal barrier coatings Oxide First principles calculation Thermal properties Mechanical properties
  • 相关文献

同被引文献200

引证文献24

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部