摘要
研究了亚纯函数的四值分担问题.对刘思思与黄斌得到的有穷级整数级的亚纯函数分担3IM+1CM的唯一性定理中的IM分担条件进行减弱,并得到结论:如果一个有穷非整数级与下级的亚纯函数与任意一个亚纯函数分担3个‘IM'值和1个CM值,则它们必相等.
The study mainly focuses on the four-value sharing of Meromorphic functions.When the condition of IM sharing about Liu Sisi and Huang Bin’s result is weakened,a conclusion can be drawn that if a meromorphic function of finite non-integer order and lower order shares 3‘IM’and 1 CM vaules with any meromorphic function,then they must be equal.
作者
蔡奇莉
林珊华
CAI Qili;LIN Shanhua(College of Mathmatics and Information Science,Fujian Normal University,Fujian 350117,China;School of Mathematics and Computer Science,Quanzhou Normal University,Fujian 362000,China)
出处
《泉州师范学院学报》
2019年第2期28-34,共7页
Journal of Quanzhou Normal University
基金
福建省自然科学基金资助项目(2018R0038)
关键词
非整数级
非整数下级
亚纯函数
唯一性
non-integer order
non-integer lowerorder
meromorphic function
unique-eness