期刊文献+

一类λ型的Bernstein算子列的逼近性质

On the Rate of Convergence of a New Family of λ Type Bernstein Operators
下载PDF
导出
摘要 根据经典的Bojanic-Cheng分解方法,结合分析技术,研究了一类新型的Bernstein算子列对一类导数为有界变差的函数类的逼近.首先由蔡清波关于一阶二阶矩的结论得到一阶中心绝对矩■的估计,接着估计了另外一项■,最后得到该新型算子的收敛阶估计. By using Bojanic-Cheng’s method and analysis techniques,the authors studied the rate of convergence of a new family of Bernstein operators for some absolutely continuous functions with a derivative equivalent to a bounded variation.By the result of Cai qingbo about the operator’s first moment and second moment,the authors obtained the first central absolute moment Bn,λ(|t-x|,x).Later,the other part Bn,λ(∫x^tφx(u)du,x) was estimated.Finally,the convergence rate of the new type operators was obtained.
作者 连博勇 蔡清波 LIAN Boyong;CAI Qingbo(Department of Mathematics,Yang'en University,Fujian 362014 ,China;College of Mathematics and Computer Science, Quanzhou Normal University,Fujian 362000,China)
出处 《泉州师范学院学报》 2019年第2期35-38,共4页 Journal of Quanzhou Normal University
基金 国家自然科学基金项目(11601266) 福建省自然科学基金项目(2006J05017) 福建省高校杰出青年科研人才培育计划(2016)
关键词 BERNSTEIN算子 收敛阶 有界变差函数 Bernstein operators rate of convergence bounded variation functions
  • 相关文献

参考文献1

二级参考文献5

  • 1连博勇,陈旭,曾晓明.关于Bernstein-Bézier算子对一类绝对连续函数的逼近[J].厦门大学学报(自然科学版),2006,45(6):749-751. 被引量:5
  • 2LIU Z X. Approximation of the Kantorovich-Bezier operators in Lp[0,1][J]. J Northeastern Math, 1991,7(2) :199-205.
  • 3ZENG X M,PIRIOU A. On the rate of convergence of two Bernstein-Bezier type operators for bounded variation[J].J Approx Theory, 1998(95) : 369-387.
  • 4ZENG X M. On the rate of convergence of two Bernstein-Bezier type operators for bounded variation Ⅱ[J]. J Approx Theory, 2000 (104) :330-344.
  • 5BOJANIC R,CHENG F. Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation[J]. J Math Anal Appl, 1989 (141):136-151.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部