期刊文献+

脂质组学分析方法进展及其在中药研究中的应用 被引量:13

Progress on lipidomics analytical methods and their applications in studies of traditional Chinese medicines
原文传递
导出
摘要 脂质在生物学过程中发挥着广泛而重要的作用。作为代谢组学的分支之一,脂质组学通过探究不同生理、病理状态或药物干预后整体脂质代谢的变化,从脂质代谢网络中寻找疾病的关键脂质标志物,从整体角度研究脂质代谢调控在疾病发生、发展中的作用机制及药物作用机制。由于中药成分的复杂性和作用的整体性,亟需发展适合中药复杂体系研究的科学方法揭示其药效物质、整体作用机制等科学内涵。基于脂质组学的系统生物学技术为中药复杂体系作用机制研究提供了可借鉴的思路。该文主要就脂质组学方法技术及其在中药研究中的应用进行综述,以期为中药现代化研究提供方法技术参考。 Lipids have been documented to play comprehensive and significant role in many biological processes. As a branch of metabolomics,lipidomics research mainly involves the analysis of the variation of lipid metabolism profiles under different physiologic,pathologic conditions or drug intervention,the discovery of key lipid biomarkers of a disease in lipid metabolic networks,and the study of the mechanism of action of lipid metabolic regulation during disease onset and progression,and drug treatment. Traditional Chinese medicines( TCMs)are characterized with integrated effects by multi-components,multi-targets and integrated effects. It is urgent to develop methods suitable for the study of complex TCMs to reveal the active constituents and integrated mechanism of action. Systems biology such as lipidomics provides valuable strategy and approach to illustrate the complex mechanisms of TCMs. In this paper,in order to provide technical references for TCMs,we have reviewed the analytical techniques applied in lipidomics and the applications of lipidomics in TCMs researches.
作者 缪秋韵 高雯 李杰 陈君 MIAO Qiu-yun;GAO Wen;LI Jie;CHEN Jun(School of Traditional Chinese Pharmacy,China Pharmaceutical University,Nanjing 210009,China)
出处 《中国中药杂志》 CAS CSCD 北大核心 2019年第9期1760-1766,共7页 China Journal of Chinese Materia Medica
基金 国家自然科学基金项目(81773887)
关键词 脂质组学 分析方法 中药研究 lipidomics analytical methods traditional Chinese medicines(TCMs)
  • 相关文献

参考文献3

二级参考文献48

  • 1罗国安,梁琼麟,张荣利,王义明,刘清飞,胡坪.化学物质组学与中药方剂研究——兼析清开灵复方物质基础研究[J].世界科学技术-中医药现代化,2006,8(1):6-15. 被引量:63
  • 2[1]Wang Kunren,Xue Shaobai,uu Huitu.Cell Biology[M].Beijing:Beijing Normal University Press,1998.
  • 3[3]Dickson BJ,Moser EI.Neurobiology of behaviour[J].Curr Opin Neurobiol,2007,17(6):672-674.
  • 4[4]Nottale L,Auffray C.Scale relativity theory and integrative systems biology:2 Macroscopic quantum-type mechanics[J].Prog Biophys Mol Biol,2008,97(1):115-157,
  • 5[5]Rho S,You S,Kim Y,et al.From proteomies toward systems biology:integration of different types of proteomies data into network models[J].BMB Rep,2008,41(3):184-193.
  • 6[7]Sreenivasulu N,Graner A,Wobus U.Barley genomies:an overview[J].Int J Plant Genomics,2008,486258.
  • 7[8]Price ND,Foltz G,Madan A,et al.Systems biology and cancer stem cells[J].J Cell Mol Med,2008,12(1):97-110.
  • 8[9]Bonneau R,Reiss DJ,Shannon P,et al.The Inferelator.an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo[J].Genome Biol,2006,7(5):R36.
  • 9[10]Ullah M,Wolkenhaner O.Family tree of Markov models in systems biology[J].IET Syst Biol,2007,1(4):247-254.
  • 10[11]Wolkenhauer O.Mathematical modelling in the post-genome era:understanding genome expression and regulation--a system theoretic approach[J].Biosystems,2002,65(1):1-18.

共引文献85

同被引文献126

引证文献13

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部