期刊文献+

基于Logistic回归模型的P2P借款人信用违约风险评估模型研究 被引量:2

Research on the Credit Risk Assessment of Peer-to-peer Lending Borrower Based on Logistic Regression Model
下载PDF
导出
摘要 针对P2P网络信贷平台信用风险特点,以借款人违约情况为被解释变量,运用Logistic回归方法建立借款人信用违约风险评估模型。原始数据从人人贷网站抓取获得,选取的原始评估变量有24个,通过信息增益进行指标降维,得到19个解释变量,并以此建立了Logistic回归模型。通过五步逐次回归得出,性别、逾期次数、逾期金额、身份认证和学历认证等5个因素作为评价个人信用风险的主要依据,并建立了Logistic回归模型。回归模型的判别准确率表明所构建的借款人信用风险评估模型预测效果较好。 Based on the credit risk characteristics of P2 P network credit platform,this paper uses Logistic regression method to establish a credit default risk assessment model for borrowers when taking the borrower default situation as the explanatory variable.Raw data is obtained from the crawl of the Renren loan website.There are 24 original evaluation variables selected.Through the information gain,the explanatory variables are reduced to 19.Through five steps of regression,the five factors including gender,overdue number,overdue amount,identity certification and academic qualifications should be used as the main basis for evaluating personal credit risk,and the logistic regression model is established.The discriminative accuracy of the regression model indicates that the constructed credit risk assessment model of the borrower has a better prediction effect.
作者 陈雪莲 潘美芹 CHEN Xuelian;PAN Meiqin(School of Business and Management, Shanghai International Studies University,Shanghai 200083, China)
出处 《上海管理科学》 2019年第3期7-10,共4页 Shanghai Management Science
关键词 P2P网络借贷 信用违约风险 LOGISTIC回归模型 信息增益 P2P lending credit default risk Logistic regression model information gain
  • 相关文献

参考文献2

二级参考文献13

  • 1迟国泰,许文,孙秀峰.个人信用卡信用风险评价体系与模型研究[J].同济大学学报(自然科学版),2006,34(4):557-563. 被引量:28
  • 2王圆,孙铁利,李杨.Web文本挖掘中的特征表示和特征提取[J].电脑知识与技术,2006,1(5):67-68. 被引量:2
  • 3Larrimore,L.,Li,J.,Larrimore,J.,Markowitz,D.,and Gorski,S.,2011. Peer to Peer Lending: The Relationship between Language Features, Trustworthiness,and Persuasion Success[J]. Journal of Applied Communication Research, (2):19-37.
  • 4Lin, Mingfeng, Prabhala, N., and Viswanathan, R.S., 2013. Judging Borrowers by the Company They Keep : Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending[ J ]. Managemem Science, ( 1 ) : 17-35.
  • 5Pope,D.G.,and Sydnor,J.R.,2011. What's a Picture? Evidence of Discriminations of Loan Fundability in the Prosper.corn Marketplace[J]. Journal of Human Resources, ( 11 ) : 53-92.
  • 6Puro, L., and Teich, J.E.,2010.Wallenius Hannele, WalIenius Jyrki. Borrower Decision Aid for People-to-people Lending[ J ]. Decision Support Systems, (4) : 52-60.
  • 7Rstadsand,J.I.,2004. Net Lendeing of Households and Non-profit Institution Serving Households:An Analysis of Discrepancies Between Fi- nancial and Non-financial Accounts [ J ]. Economic Bulletin, (10) : 112-118.
  • 8Zeller, M., 1998. Determinant of Repayment Performance in Creditgroups :The Role of Program Design Intragroup Risk Pooling, and Social Co- hesion[J]. Economic Development and Cultural Change, (3):599-621.
  • 9陈湘丽.商业银行信用风险的测度框架研究[J].武汉理工大学学报,2008,30(9):165-168. 被引量:2
  • 10陈建超,郑启伦,李庆阳,严桂夺.基于特征词关联性的同义词集挖掘算法[J].计算机应用研究,2009,26(7):2517-2519. 被引量:10

共引文献79

同被引文献22

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部