期刊文献+

基于多属性逆向拍卖的创意众包双方最优策略研究

Optimal Strategies of Crowdsourcing and Contestants Based on Multi-attribute Auctions
下载PDF
导出
摘要 众包竞赛作为新兴的社会互动行为下的商业模式,创意众包通过汇集公众的知识、技能、信息,帮助企业直接面对消费者,全面创新产品设计和开拓销售市场,充分利用互联网优势来应对市场快速变化的需求。所研究的是固定奖金机制下的众包竞赛,发包方的目的为最大化创意方案的最高质量。首先,根据全支付拍卖的相关理论建立发包方和接包方双方多属性的效用模型,然后运用Stackelberg博弈的方法得出均衡解,并分析竞赛参与人数、奖金、接包方的得分和接包方的创意努力成本参数等对众包双方的最优策略的影响。研究表明:因为接包方存在均衡投标,竞赛人数的增加会使接包方为竞赛所付出的努力先增加后减少,而且创意努力的成本参数越低,其期望效用越高;关于发包方奖金金额的设置,因为接包方的能力有限,奖金不能无限地激励接包方,导致奖金的增加会使发包方的效用先增加后减少;发包方通过设置最低得分可以防止接包方联合低价,导致发包方无法得到高质量的创意方案。 As a business model under the emerging social interaction behavior,crowdsourcing gather public knowledge,skills,and information to help companies directly face consumers,fully explore innovative product design and sales markets,and make full use of Internet advantages to respond market demand.This paper explores crowdsourcing contest which is under a fixed bonus mechanism.The purpose of crowdsourcing is to maximize the best quality.First,we establish utility function both the contestant and the Crowdsourcing company,and then the optimal solutions to Stackelberg game and then analysis results show that:the increase in the number of contestants will increase the effort for the competition and then decrease;the lower the creative effort cost of the contestants,the higher the expected utility;due to the limited ability of contestants,bonuses can′t infinitely motivated contestants,so as the bonus increases,crowdsourcing company′s expected utilities increases first and then decrease.
作者 徐琪 张慧贤 XU Qi;ZHANG Huixian(Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)
出处 《上海管理科学》 2019年第3期36-42,共7页 Shanghai Management Science
基金 国家自然科学基金项目(71572033 71832001)
关键词 众包竞赛 多属性 奖金 参赛人数 全支付拍卖 crowdsourcing multiple attributes bonus number of participants all pay auction
  • 相关文献

参考文献2

二级参考文献32

  • 1Teich J E, Wallenius H, Wallenius J, et al. Emerging multiple issue e-auctions[J]. European Journal of Operational Research, 2004, 159 (1): 1 16.
  • 2Bichler M. An experimental analysis of multi-attribute auction[J]. Decision Support Systems, 2000, 29: 249-268.
  • 3Chen-Ritzo C, Harrison T, Wasnica M K, et al. Better, faster, cheaper: A multiattribute reverse auction mechanism with restricted information feedback[J]. Management Science, 2005, 51(12): 1753-1762.
  • 4Che Y K. Design competition through multidimensional auctions[J]. Journal of Economics, 1993, 24: 668-680.
  • 5Branco F. The design of multidimensional auctions[J]. Journal of Economics, 1997, 28(1): 63- 81.
  • 6Parkes D C, Kalagnanam J. Iterative multi-attribute vickrey auctions[J]. Management Science, 2004, Special Issue on Electronic Markets.
  • 7David E, Azoulay-Schwartz R, Kraus S. Protocols and strategies for automated multi-attributes auctions[C]// Proc of the 1st Conference on Autonomous Agents and Multi-agent Systems, Bologna, Italy, 2002: 77-85.
  • 8David E, Azoulay-Schwartz R, Kraus S. An English auction protocol for multi-attributes items[C]// Agent Mediated Electronic Commerce: IV. Designing Mechanisms and Systems, LNAI, 2002, 2531: 5288.
  • 9David E, Azoulay-Schwartz R, Kraus S. Bidding in sealed-bid and English multi-attribute auctions[J]. Decision Support Systems, 2006, 42: 527-556.
  • 10Wolfstetter E. Auctions : An introduction [ J ]. Journal of Economic Surveys, 1989, 10 (4) : 367 - 420.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部