期刊文献+

逆协方差交叉融合鲁棒Kalman滤波器 被引量:2

Inverse Covariance Intersection Fusion Robust Steady-State Kalman Filter
下载PDF
导出
摘要 分布式状态估计系统通过将多个传感器状态融合以得到更精确的融合结果,当传感器之间的协方差未知时,常采用保守估计的策略,但结果精确度较差。为了在传感器之间互协方差未知时得到更精确的融合结果,引入了逆协方差交叉算法,将其与局部稳态Kalman滤波器相结合,提出逆协方差交叉融合鲁棒Kalman滤波器。它克服了协方差交叉融合(CI)算法保守的缺点,证明了ICI的精度高于CI的精度,并基于协方差椭圆给出ICI、CI和局部传感器精度的几何解释。通过两传感器系统的蒙特卡洛仿真例子表明,其实际精度相比于CI融合鲁棒稳态Kalman滤波器更接近于带已知互协方差的最优融合器的精度。 Aimed at the problems that in distributed state estimation systems,the fusion methods are often employed to systematically combine multiple estimates of the state into a single,more accurate estimate,and if the correlation structure is unknown,conservative strategies are typically pursued with less accurate,an inverse covariance intersection fusion robust steady-state Kalman filter is proposed to gain more accurate estimate.As a major advantage of the novel approach,the fusion results prove to be more accurate than those provided by the well-known covariance intersection method.The geometric interpretation of the accuracy relations is given based on the covariance ellipses.A Monte-Carlo simulation example for a two-sensor system shows that its actual accuracy is close to that of the optimal Kalman fuser with known cross-covariance.
作者 高晓阳 王刚 万鹏程 王睿 GAO Xiaoyang;WANG Gang;WAN Pengcheng;WANG Rui(Air and Missile Defense College,Air Force Engineering University,Xi’an 710051,China)
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2019年第2期94-97,共4页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金(61703412) 中国博士后科学基金(2016M602996)
关键词 分布式融合 逆协方差交叉 鲁棒Kalman滤波器 distributed fusion estimation inverse covariance intersection steady-state Kalman filter
  • 相关文献

参考文献2

二级参考文献14

  • 1Julier S J, Uhlmann J K. A non-divergent estimation algorithm in the presence of unknown correlations [C]//Proceedings of the 1997 American Control Con- ference. Albuquerque, NM: IEEE, 1997: 2369 -2373.
  • 2Li Hao, Nashashibi F, Yang Ming. Split covariance intersection filter: theory and its application to vehicle localization [J]. IEEE Transactions on Intelligent Transportation System, 2013, 14(4) : 1860-1871.
  • 3Uhlmann J K. General data fusion for estimates with unknowncross covariances [ C ] // Proc of the SPIE Aerosence Conference. Orlando: SHE, 1996: 536- 547.
  • 4Wanasinghe T R, Mann G K I, Gosine R G. Decen- tralized cooperative localization for heterogeneous multi-robot system using split eovariance intersection filter[C]//Proc of Canadian Conference on Computer and Robot Vision. Piscatway.. ]NEE CPS, 2014: 167-174.
  • 5Aeberhard M, Schchtharle S, Kaempchen N, et al. Track-to-track fusion with asynchronous sensors u- sing information matrix fusion for surround environ- ment perception[J]. IEEE Transactions on Intelligent transportation system, 2012: 4(13): 1717-1726.
  • 6Qi Wenjuan, Deng Zili. Covariance intersection fusion kalman filter for two-sensor ARMA signal with col- ored measurement noises[C]//Proc of Fifth Confer- ence on Measuring Technology and Mechatronics Au- tomation. Piscatway.. IEEE CPS, 2013: 401-404.
  • 7Hinka O, Sluciak O, Hlawatsch F, et al. Distributed data fusion using iterative covariance intersection [C]//Proc of International Conference on Acoustics, Speed and Signal Processing. Piscatway:IEEE, 2014: 1861-1865.
  • 8Carrillo Aree L C, Nerurkar E D, Gordillo J L, et al. Decentralized multi-robot cooperative localization using covarianee interection [C]//Proe of Interna- tional Conference on Intelligent Robots and System. Piscatway: IEEE 2013: 1412-1417. Ma.
  • 9Jing, Sun Shuli. Suboptimal fusion estimation for systems with random delay, packet dropout and uncertain observation[C]//Proc of 32nd Chinese Control Conference. Piscatway: IEEE CPP, 2013: 4553-4558.
  • 10Naimark L. Multiple sensor skewed eovariance tar- get localization[C]//Proc of International Confer- ence on Distributed Computing in Sensor System. Piscatway: IEEE, 2013: 289-291.

共引文献14

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部