期刊文献+

基于随机森林的绿洲典型湿地信息提取 被引量:3

Information Extraction of Wetlands in Typical Oasis Based on Random Forest Model
下载PDF
导出
摘要 以塔里木河边缘的渭-库绿洲(渭干河-库车河绿洲)为研究区,采用在特征选择和分类提取方面具有明显优势的随机森林算法,对研究区内的湿地信息进行提取。基于多时相、光谱信息丰富的Landsat8 OLI数据生成包括光谱特征、植被和水体指数、盐分指数、纹理信息在内的4种特征变量;根据以上特征设计6种不同的提取方案,对绿洲内部的干旱区湿地信息进行提取并验证不同方案的提取精度,旨在选取最佳方案提高湿地信息提取的精度。结果表明:①多种特征变量的有效组合是提高湿地信息提取精度的关键,就不同特征对湿地信息提取的贡献度而言,光谱特征>植被和水体指数>纹理特征>盐分指数;②基于随机森林算法优选的特征变量提取速度最快,效果最佳,总体精度为90.09%,Kappa系数为0.882 5。提取方法在挖掘特征变量的同时,保证了湿地信息提取的准确性,提高了运行效率。湿地提取结果对当地绿洲制定科学的水肥管理措施及进行干旱状况评估具有一定的现实意义。 In this study,the Wetland in Werigan-Kuqia River Delta Oasis( WKRDO),as a typical wetland on the banks of the Tarim River,is considered as a study area. The method of Random Forests,which has obvious advantages in feature selection and classification,is chosen to extract wetland information from the study area. First of all,four different characteristic variables,including spectral features,vegetation indices,water indices,salinity indices and texture features,are generated based on landsat 8 OLI data with rich multi-temporal and spectral information,and then six different classification schemes are constructed based on the above characteristic information. At last,the random forest classifier is used to extract the wetland information of the WKRDO,and to verify the extraction accuracy of different results.The purpose is to select the best plan to improve the effect of wetland information extraction. The results show that:① The effective use of multiple feature variables is the key to improving the information wetland of extraction. For the contribution of different characteristics to the wetland information extraction,spectral features > vegetation indices and water indices > texture feature > salinity indices;② the preferred features based on the random forest algorithm are significant to extraction accuracy,with the overall accuracy up to 90.09%,and the Kappa coefficient is 0.882 5. The extracted types reflect the differences in soil properties. It shows that the random forest algorithm can effectively process the feature selection. The result has important practical significance for formulating scientific water and fertilizer management measures and evaluating drought situation in the local oasis.
作者 顾峰 丁建丽 王敬哲 葛翔宇 GU Feng;DING Jian li;WANG Jing zhe;GE Xiang yu(Key Laboratory of Wisdom City and Environmental Modeling Department of Education,Xinjiang University,Urumqi 830046, China;Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)
出处 《中国农村水利水电》 北大核心 2019年第6期44-50,55,共8页 China Rural Water and Hydropower
基金 国家自然科学基金资助项目(41771470) 新疆自治区重点实验室专项基金资助项目(2016D03001) 自治区科技支疆项目(201591101)
关键词 干旱区湿地 信息提取 随机森林 特征选择 盐分指数 wetland in arid areas information extraction random forest feature selection salinity index
  • 相关文献

参考文献10

二级参考文献233

共引文献686

同被引文献41

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部