期刊文献+

复形的C-Gorenstein投射维数 被引量:2

Complex C-Gorenstein Projection Dimension
下载PDF
导出
摘要 设R是一个有单位元的结合环,C是一个关于直和封闭且包含所有投射模的左R-模类。介绍左R-模复形的C-Gorenstein投射维数的概念,它是复形的Gorenstein投射维数的一个推广。利用环模理论和同调代数的方法,讨论复形X的C-Gorenstein投射维数C-Gpd(X)与其每个层次上模Xm的C-Gorenstein投射维数C-Gpd(X^m)之间的关系,给出复形X的C-Gorenstein投射维数小于等于n的若干等价刻画。证明了C-Gpd(X)=sup{C-Gpd(X^m) m∈Ζ},且当C-Gpd(X)=n(n≥1)时,存在复形短正合列0→H→G→X→0和0→X→H’→G’→0,其中G,G’为C-Gorenstein投射复形,H的投射维数小于等于n-1且H’的投射维数小于等于n。 Let R be an associative ring with unit cells,C is a class of left R-modules that is closed under direct sums and contains all projective modules. The paper introduces the notion of C-Gorenstein projective dimensions of complexes of left R-modules,it is a generalization of Gorenstein projective dimension of complex. Using theories of rings and modules,and methods of homological algebras,relations between C-Gorenstein projective dimension C-Gpd(X) of complex X and C-Gorenste in projective dimension C-Gpd(X^m) of every term module Xmare discussed,some equivalent characterizations of Gorenstein projective dimension of complex X less than or equal to n are given. It proves C-Gpd(X)= sup{C-Gpd(X^m)| m ∈Z},and there exist short exact sequences of complexes 0 → H → G → X → 0 and 0 → X → H’→ G’→ 0,with G,G’ C-Gorenstein projection complexes,projection dimension of H’ is less than or equal to n-1 and projection dimension of H’ less than or equal to n,when C-Gpd(X)= n(n≥1).
作者 何东林 李煜彦 HE Donglin;LI Yuyan(School of Mathematics and Information Science, Longnan Teachers College, Longnan 742500, China)
出处 《四川理工学院学报(自然科学版)》 CAS 2019年第3期89-94,共6页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 甘肃省高等学校科研项目(2018A-269) 陇南师范高等专科学校校级科研重点项目(2016LSZK01003)
关键词 C-Gorenstein投射复形 C-Gorenstein投射维数 预覆盖 C-Gorenstein projective complexes C-Gorenstein projective dimension precover
  • 相关文献

参考文献3

二级参考文献29

  • 1ENOCHS E E, JENDA O M G. On Gorenstein injective modules[J]. Comm Algebra, 1993,21: 3489-3501.
  • 2ENOCHS E E,JIgNDA O M G. Gorenstein injeetive and projective modules [J]. Math Z, 1995,220 : 611-633.
  • 3BENNIS D,MAHDOU N. Strongly Gorensteon projective,injective and flat modules [J]. J pure Appl Algebra, 2007,210: 437-415.
  • 4YANG X Y, LIU Z K. Strongly Gorensteon projective, injective and flat modules [J]. J Algebra, 2008,320 : 2659-2674.
  • 5ENOCHS E E, JENDA O M G, XU J. Foxby duality and Gorenstein injective and projective modules [J]. Trans Amer Math Soc, 1996,384 : 3223-3234.
  • 6ENOCHS E E,JENDA O M G. Relative homological algebra [M]. Berlin· New York:Walter De Gruyter,2000.
  • 7ENOCHS E E, JENDA O M G. Ω-Gorenstein projective and flat covers and Ω-Gorenstein injective envelopes[J]. Comm Algebra,2004,32: 1453-1470.
  • 8HOLM H. Gorenstein homologieal dimensions [J]. J pure Appl Algebra,2004,189: 167-193.
  • 9Enochs E. E., Jenda O. M. G., Xu J. Z., Orthogonality in the category of complexes, Math. J. Okayama Univ., 1996, 38(1): 25-46.
  • 10Enochs E. E., Garcia Rozas J. R., Gorenstein injective and projective complexes, Comm. Algebra, 1998, 26: 1657-1674.

共引文献29

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部