摘要
为了减小单支股票训练数据中的噪声对分类器性能的影响,提出了一个新的基于簇的股票价格涨跌预测方法(AP-SVM)。AP-SVM首先使用近邻传播(AP)算法挑选出与待预测股票价格变化相似度较高的其他股票,然后将待预测股票和与其价格变化相似的其他股票一起作为输入数据,训练一个支撑向量机(SVM)实现对待预测股票价格涨跌的预测。实验结果表明,当训练数据中存在噪声时,AP-SVM在预测准确率方面优于传统的SVM方法。
To overcome the performance degradation of the classifier due to the noise in individual stock price data,this paper proposes a novel cluster-based stock price trend prediction method(AP-SVM). We first used the affinity propagation algorithm to select all the stocks with high similarity in the aspect of the price tendency to the predicted stock,and then used these stocks as the training data to fit a support vector machine (SVM). The experimental results show that AP-SVM surpasses the traditional SVM method in predicting accuracy in the noisy training data.
作者
胡迪
黄巍
HU Di;HUANG Wei(School of Computer Science and Engineering,Wuhan Institute of Technology, Wuhan 430205,China;Hubei Key Laboratory of Intelligent Robot(Wuhan Institute of Technology),Wuhan 430205,China)
出处
《武汉工程大学学报》
CAS
2019年第3期296-302,共7页
Journal of Wuhan Institute of Technology
关键词
股票价格预测
近邻传播
支持向量机
AP-SVM模型
stock price trend prediction
affinity propagation
support vector machine
AP-SVM model