期刊文献+

基于视觉传达特征的艺术品颜色分拣方法优化 被引量:2

Art Color Sorting Method Based on Visual Communication Features
下载PDF
导出
摘要 为了提高对艺术品的三维重构和分拣能力,提出一种基于视觉传达的艺术品颜色分拣方法.采用颜色特征提取方法进行艺术品视觉图像的三维重构,结合稀疏散乱点重组方法进行艺术品图像的颜色特征区域分割处理;采用纹理跟踪匹配方法进行艺术品的图像信息融合,结合角点检测和三维边缘轮廓特征检测方法实现艺术品颜色分拣的纹理填充和自动渲染,提高艺术品图形的颜色视觉特征表达能力;采用全局颜色均衡配置方法进行艺术品的视觉特征采样和均衡处理,根据均衡配置结果采用模糊聚类方法实现对艺术品的颜色特征分拣,提高艺术品的三维重构和分拣辨识能力.仿真结果表明:采用该方法进行艺术品颜色分拣的准确性较高,对艺术品视觉重构的效果较好,提高了艺术品的三维重建和自动分拣能力. In order to improve the ability of 3D reconstruction and sorting of artwork,a color sorting method based on visual communication is proposed.The method of color feature extraction is used to reconstruct 3D image of artwork.Combining the sparse scattered point recombination method,the color feature region of the artwork image is segmented,and the texture tracking matching method is used to fuse the image information of the artwork.Combining corner detection and 3D edge contour feature detection,texture filling and automatic rendering of artwork color sorting can be realized,and the ability of color visual feature expression of artwork graphics can be improved.The global color equalization method is used to sample and equalize the visual features of artwork,according to the result of equalization,fuzzy clustering method is used to classify the color features of artworks,and thus to improve the ability of 3D reconstruction and sorting and identification of works of artwork.The simulation results show that this method is more accurate in color sorting of artworks and has better effect on visual reconstruction of works of art and improves the ability of 3D reconstruction and automatic sorting of artwork.
作者 汪彦 WANG Yan(School of Arts,Huangshan University,Huangshan Anhui 245041,China)
出处 《兰州工业学院学报》 2019年第3期73-77,共5页 Journal of Lanzhou Institute of Technology
基金 教育部人文社科研究项目(18YJC760072)
关键词 视觉传达 艺术品 图像 特征 分拣 颜色 visual communication art image feature sorting color
  • 相关文献

参考文献9

二级参考文献92

  • 1陈宏,田捷.检验配准模式的指纹匹配算法[J].软件学报,2005,16(6):1046-1053. 被引量:11
  • 2I.owe D G. 1 )istinctive Image Features from ale-invariant Key- ints[J]. International Journal of Computer Vision, 2004,60 (2):91-110.
  • 3Beom S K, I-fang H I., Nam I C. Real-time Panorama Canvas of Natural lmages[J] IEEE Transactions On Consumer Electron ies,2011,57(1) :1961-1968.
  • 4Luo Juan, Ouhong G. SURF applied in Panorama Image Stitc- hing[C]//Image Processing Theory, Tools and Applications. 2010:495-490.
  • 5Quresh H S, Khan M M, Hafiz R,et al. Quantitative quality as- sessment of stitched panoramic images[J] IET Image Process ing,2012,6(11) : 1348-1358.
  • 6Chen Fu-xing, Wang Run-sheng. Fast RANSAC with preview model parameters evaIuaion[J] Journal of oftware, 2006.16 (8) : 1431-1437.
  • 7Bostanci E, Kanwal N, Clark A F. Spa'tial Statistics of Image Features for Performance Comparison[J]. IEEE Transactions on Image Processing, 2014,23 (1 ) : 153-162.
  • 8Xiong Yin-gen, Pulli K. Fast Panorama Stitching for High Qual- ity Panoramic Images on Moile Phones[J]. IEEE Transactions on Consumer Eleclronics, 201 O, 56 (2) : 298 306.
  • 9TAN J, WANG W X, FNEG M SH, et al. A New approach based on ncut clustering algorithm for signature segmentation [ J ]. AASRI Proeedia, 2012( 1 ) .. 14-20.
  • 10GUAN N, TAO D, I.UO Z, et al. Nonnegative patch alignment framework [J]. IEEE Transactions on Neural Networks ,2011, 22(8).,1218 -1230.

共引文献174

同被引文献25

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部