期刊文献+

机器视觉系统超分辨率图像准确识别方法研究 被引量:9

Research on the method of super-resolution image recognition in machine vision system
下载PDF
导出
摘要 为了能够准确识别超分辨率图像,提出了一种基于图像重构的神经网络图像识别方法.这种超分辨率图像识别方法采用Gamma方法去除机器视觉系统超分辨率图像中的无用信息,根据超分辨率图像的阈值对图像进行分割,并提取超分辨率图像的特征,重构分割后的超分辨率图像,利用Hopfield神经网络实现对机器视觉系统超分辨率图像的识别.仿真实验结果证明,所提方法能够对机器视觉系统超分辨率图像进行准确识别,并且识别效率高、速度快. In order to accurately identify super-resolution images, a neural network image recognition method based on image reconstruction is proposed. This super-resolution image recognition method uses Gamma method to remove the useless information in the super-resolution image of the machine vision system The image is segmented according to the threshold of the super-resolution image, and the features of the super-resolution image are extracted, and the segmented image is reconstructed. Super-resolution image, using the Hopfield neural network to realize the super-resolution image recognition of machine vision system. The simulation experiment results show that the proposed method can accurately recognize the super-resolution image of the machine vision system? and the recognition efficiency is high and the speed is high.
作者 陈威 CHEN Wei(College of Computer Science & Technology, Huaqiao University, Xiamen 361021,China)
出处 《微电子学与计算机》 北大核心 2019年第6期105-108,共4页 Microelectronics & Computer
基金 国家自然科学基金(61473237)
关键词 机器视觉系统 超分辨率 图像识别 machine vision system super resolution image identification
  • 相关文献

参考文献8

二级参考文献78

共引文献112

同被引文献123

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部