期刊文献+

基于奇异值比值的正则化矩阵修正方法 被引量:5

Correction Method of Regularized Matrix Based on Ratio of Singular Value
下载PDF
导出
摘要 针对雷达数据反演过程中存在的不适定性问题,基于岭估计方法分析,提出了一种基于奇异值比值的正则化矩阵修正方法。奇异值分解矩阵后,通过条件数法在奇异值矩阵中确定门限奇异值,将门限奇异值与各奇异值比值的平方根构造对角矩阵,将对角矩阵与左奇异值向量矩阵结合构造正则化矩阵。该方法能够加强对较小奇异值的修正,而减弱对较大奇异值的修正,从而保证了不适定问题解算结果的可靠性及计算精度。数值计算与误差分析结果证明了该方法的有效性。 A new correction method is presented for the ill-conditioned problems in radar data inversion process. After singular value decomposition of the matrix, the threshold of the singular value is selected by the conditional number method in the singular value matrix, and the ratio of the threshold singular value to each singular value is composed into a diagonal matrix. Then comnine the diagonal matrix with the left singular value vector matrix to construct the regularization matrix. The method adjusts the correction of each singular value by regularization parameter and the constructed diagonal matrix. Because the values in the singular value matrix are monotonically decreasing, the values in the constructed regularization matrix monotonically increase. Therefore, the correction for larger singular values will be weak, while the correction for smaller singular values will gradually change with the gradual decrease of singular values, ensuring the reliability of the numerical estimation and the calculation accuracy. The numerical calculations and error analysis demonstrate the effectiveness of the method.
作者 杭礼辉 葛俊祥 张艳艳 HANG Lihui;GE Junxiang;ZHANG Yanyan(Jiangsu Key Laboratory of Meteorological Observation and Information Processing ,Nanjing University of Information Science & Technology, Nanjing 210044, China;College of Electronic and Information Engineering,Nanjing University of Information Science & Technology, Nanjing 210044, China)
出处 《现代雷达》 CSCD 北大核心 2019年第4期54-58,62,共6页 Modern Radar
基金 国家自然科学基金资助项目(61671249)
关键词 岭估计 奇异值比值 正则化矩阵 ridge estimation singular value ratio regularization matrix
  • 相关文献

参考文献4

二级参考文献54

共引文献59

同被引文献50

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部