摘要
用户用电典型模式的分类预测是电力负荷预测的重要组成部分。针对单核模糊C均值算法在电力大数据挖掘中不能兼顾预测精度和普适性能好的问题,提出了一种电力短期负荷场景中改进的无监督学习多核模糊C均值聚类算法,建立了双层神经网络的电力数据负荷预测模型对比该改进的算法对电力负荷预测效果的影响。用户数据由MapReduce并行化处理加速。数值实验结果表明:改进的算法在实际电力用户数据集中,具有广泛的适用性和有效性,同时能显著提高电力短期负荷预测的精度。
The classification prediction of the typical mode of user consumption is an important part of electric power load forecasting.Aiming at the problem that the single-kernel fuzzy C-means algorithm cannot balance the prediction accuracy and the universal performance in big data mining of electric power,so this paper presents an improved unsupervised learning multi-kernel fuzzy C-clustering algorithm in the short-term power load scenario.A power data load forecasting model of the double-layer neural network is established to compare the effects of the improved algorithm.User data is accelerated by MapReduce parallelization.The numerical experiments show that the improved algorithm has wide applicability and effectiveness in the actual power user data set,and can significantly improve the accuracy of short-term load forecasting.
作者
谢伟
赵琦
郭乃网
苏运
田英杰
Xie Wei;Zhao Qi;Guo Naiwang;Su Yun;Tian Yingjie(State Grid Shanghai Municipal Electric Power Company,Shanghai 200437,China;School of Mathematical Sciences,Fudan University,Shanghai 200433,China)
出处
《电测与仪表》
北大核心
2019年第11期49-54,60,共7页
Electrical Measurement & Instrumentation
基金
国家电网公司科技项目(52094017002U)
关键词
用电大数据
短期负荷预测
多核模糊C均值聚类
并行计算
big data of power consumption
short-time load forecast
multi-kernel fuzzy C-means clustering
parallel computing