期刊文献+

Residuals-Based Deep Least Square Support Vector Machine with Redundancy Test Based Model Selection to Predict Time Series 被引量:1

Residuals-Based Deep Least Square Support Vector Machine with Redundancy Test Based Model Selection to Predict Time Series
原文传递
导出
摘要 In this paper, we propose a novel Residuals-Based Deep Least Squares Support Vector Machine(RBDLSSVM). In the RBD-LSSVM, multiple LSSVMs are sequentially connected. The second LSSVM uses the fitting residuals of the first LSSVM as input time series, and the third LSSVM trains the residuals of the second, and so on. The original time series is the input of the first LSSVM. Additionally, to obtain the best hyper-parameters for the RBD-LSSVM, we propose a model validation method based on redundancy test using Omni-Directional Correlation Function(ODCF). This method is based on the fact when a model is appropriate for a given time series, there should be no information or correlation in the residuals. We propose the use of ODCF as a statistic to detect nonlinear correlation between two random variables. Thus, we can select hyper-parameters without encountering overfitting,which cannot be avoided by only cross validation using the validation set. We conducted experiments on two time series: annual sunspot number series and monthly Total Column Ozone(TCO) series in New Delhi. Analysis of the prediction results and comparisons with recent and past studies demonstrate the promising performance of the proposed RBD-LSSVM approach with redundancy test based model selection method for modeling and predicting nonlinear time series. In this paper, we propose a novel Residuals-Based Deep Least Squares Support Vector Machine(RBDLSSVM). In the RBD-LSSVM, multiple LSSVMs are sequentially connected. The second LSSVM uses the fitting residuals of the first LSSVM as input time series, and the third LSSVM trains the residuals of the second, and so on. The original time series is the input of the first LSSVM. Additionally, to obtain the best hyper-parameters for the RBD-LSSVM, we propose a model validation method based on redundancy test using Omni-Directional Correlation Function(ODCF). This method is based on the fact when a model is appropriate for a given time series, there should be no information or correlation in the residuals. We propose the use of ODCF as a statistic to detect nonlinear correlation between two random variables. Thus, we can select hyper-parameters without encountering overfitting,which cannot be avoided by only cross validation using the validation set. We conducted experiments on two time series: annual sunspot number series and monthly Total Column Ozone(TCO) series in New Delhi. Analysis of the prediction results and comparisons with recent and past studies demonstrate the promising performance of the proposed RBD-LSSVM approach with redundancy test based model selection method for modeling and predicting nonlinear time series.
作者 Yanhua Yu Jie Li
机构地区 the School of Computer
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第6期706-715,共10页 清华大学学报(自然科学版(英文版)
关键词 time series prediction information REDUNDANCY residuals-based DEEP Least Squares Support Vector Machine (LSSVM) OMNI-DIRECTIONAL Correlation Function (ODCF) time series prediction information redundancy residuals-based deep Least Squares Support Vector Machine(LSSVM) Omni-Directional Correlation Function(ODCF)
  • 相关文献

参考文献3

二级参考文献8

共引文献52

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部