摘要
对于包含有时空属性信息的海量交通轨迹数据进行存储、检索等具有重要的实际意义.针对交通轨迹数据的时空特性、无序性以及采样率高等特点,提出一种基于时空距离进行聚类的数据项构造方法;同时针对数据的时空特性和传统R树的节点重叠率较高导致检索效率慢的情况,提出增加时间维度且基于改进的层次聚类算法的R树构造方法.解决了传统方法中树过高以及节点重复率高导致的检索效率问题.实验结果表明,该构造方法得到的R树结构在检索效率方面性能优于传统方法.
It is of great practical significance to store and retrieve massive traffic trajectory data containing spatio-temporal information.Aiming at the spatio-temporal characteristics,disorder and high sampling rate of traffic trajectory data,a method of constructing data items is proposed.The method is based on a clustering algorithm using spatio-temporal distance.At the same time,the trajectory data set has spatio-temporal characteristics,and the high node overlap rate of the traditional R tree will result in slow retrieval efficiency.In response to this situation,a method of constructing R-Tree with time dimension is proposed.The method is based on an improved hierarchical clustering algorithm.It solves the problem of retrieval efficiency of traditional method caused by the height of tree and the high rate of node repetition.Experimental results show that the method outperforms the traditional method in terms of retrieval efficiency.
作者
王智广
申思
鲁强
WANG Zhi-guang;SHEN Si;LU Qiang(Department of Computer Science and Technology University of Petroleum (Beijing),Beijing 102249,China;Beijing Key Laboratory of Petroleum Data Mining,Beijing 102249,China)
出处
《内蒙古大学学报(自然科学版)》
CAS
北大核心
2019年第3期317-323,共7页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家科技重大专项基金(2017ZX05018-005)
关键词
R树
交通轨迹数据
检索
层次聚类
R-Tree
traffic trajectory data
retrieval
hierarchical clustering