摘要
针对卫星激光测距系统(SLR)的稳定性问题,该文分析了北京房山kHz地靶观测数据,根据系统延迟的统计信息构建异常辨识统计量,剔除异常数据。地靶有效数据在一个较小的范围内集中,变化幅度0.25ns左右;分析了单次系统延迟变化在0.2ns左右;通过ARMA时间序列分析方法,确定2018年北京房山SLR系统延迟的变化规律,建立SLR系统延迟变化的预报模型;最后,根据预报模型,对系统延迟进行短期预报,以检测SLR系统异常,实现对SLR系统运行稳定性监测的目的。
Aiming at the stability problem of SLR system,the kHz calibration data of Beijing Fangshan was analyzed,according to the statistical information of system delay,the abnormal identification statistics were constructed,and the abnormal data was eliminated.The valid data of the ground target was concentrated in a small range with a variation range of 0.25 ns.The single-system delay variation was about 0.2 ns.Auto-regressive moving average(ARMA)time series analysis method was used to determine the SLR system delay of Beijing Fangshan,and the prediction model of delay variation of SLR system was established.Finally,according to the forecast model,the system delay was short-term forecasted to detect the abnormality of the SLR system to achieve the purpose of monitoring the stability of the SLR system.
作者
何正斌
赵春梅
马天明
瞿锋
卫志斌
HE Zhengbin;ZHAO Chunmei;MA Tianming;QU Feng;WEI Zhibin(Chinese Academy of Surveying&Mapping,Beijing 100036,China;Liaoning Technical University,Fuxin,Liaoning 123000,China)
出处
《测绘科学》
CSCD
北大核心
2019年第6期59-65,共7页
Science of Surveying and Mapping
基金
国家自然科学基金项目(41774013)
中国测绘科学研究院基本业务费项目(7771818)
关键词
卫星激光测距
异常辨识
时间序列分析
satellite laser ranging
anomaly identification
time series analysis