摘要
为了实现人机协作所需要的柔顺控制,需要机器人具有一定的合作经验。通过分析人进行意图识别的方法与过程,提出一种基于机器学习识别操作者意图的方法。建立了BP神经网络模型,对机器人进行意图识别离线训练,使其具有一定的合作技能,以便在合作过程中能够根据合作者的作用力和机器人的运动特征在线估计人的意图。该方法的优势在于克服了传统方法中建立人机合作模型困难,尤其复杂多变的人体运动模型,人体阻抗参数难以估计等缺点。实验结果证明:该方法减小了合作者作用力的同时,提升了人机协作的运动同步性,机器人柔顺性得以提高。
Endowing the robot with a certain amount of cooperation experience before tasks is essential to realize its active compliance control.Through analyzing the process of shaping the human experience and observing judgment strategies of an organism,a new intention estimation method for the collaborative robot was proposed.After offline training based on radial basis function BP neural network,the robot could obtain some cooperative skills by the prediction model.During the online execution,the robot could estimate the cooperator’s intention according to the force information from human.The method can overcome the question in establishing the model of the human robot cooperation based on traditional methods,especially for the complex and dynamic real-time movement model of human and the uncertainty impedance parameters values.Experiment results show that the cooperator’force is reduced while human robot synchronism motion is developed,so that the compliance of the robot is improved greatly.
作者
赵海文
齐恒佳
王旭之
李军强
ZHAO Haiwen;QI Hengjia;WANG Xuzhi;LI Junqiang(School of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China)
出处
《机床与液压》
北大核心
2019年第10期147-150,共4页
Machine Tool & Hydraulics
关键词
人机协作
力信息
机器学习
柔顺控制
意图识别
Human-robot cooperation
Force information
Machine learning
Compliance control
Intention recognition