期刊文献+

基于ABC+AFS-LSSVM的网络流量预测模型 被引量:2

Network Traffic Prediction Model based on ABC+AFS-LSSVM
下载PDF
导出
摘要 鉴于人工蜂群算法(ABC)算法和人工鱼群(AFS)算法本身的优势,为提高预测精度,提出基于ABC+AFS-LSSVM的网络流量预测模型.运用基于ABC+AFS-LSSVM的模型对网络流量进行了预测,并与ABC-LSSVM、AFS-LSSVM和PSO-LSSVM模型的预测结果进行了比较,结果表明,基于ABC+AFSLSSVM的网络流量预测模型预测精度较高,具有更好的性能及应用前景. In view of the advantages of the artificial swarm(ABC) algorithm and the artificial Shoal(AFS) algorithm itself, a network flow prediction model based on ABC+AFS-LSSVM is proposed to improve the prediction accuracy. The model based on ABC+AFS-LSSVM was used to predict the network traffic and compared with the predicted results of ABC-LSSVM, AFS-LSSVM and PSO-LSSVM models. The results show that the network flow prediction model based on ABC+AFS-LSSVM has high prediction precision, better performance and better application prospects.
作者 孙群 袁宏俊 SUN Qun;YUAN Hong-jun(Department of Basic,Anhui Vocational College of Electronics Information Technology,Bengbu Anhui 233030,China;College of Mathematics and Computer Science,Anhui University,Hefei Anhui 230039,China;College of Statistics and Applied Mathematics,Anhui University of Finance Economics,Bengbu Anhui 230039,China)
出处 《淮阴师范学院学报(自然科学版)》 CAS 2019年第2期124-129,共6页 Journal of Huaiyin Teachers College;Natural Science Edition
基金 安徽省教育厅高校社会科学基金项目(SK2018A0431)
关键词 人工蜂群算法 人工鱼群算法 最小二乘支持向量机 网络流量 预测 artificial bee colony artificial fish swarm least square support vector machine network flow prediction
  • 相关文献

参考文献14

二级参考文献132

共引文献452

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部