期刊文献+

滑移转向机器人不确定度分析及路面识别方法

Uncertainty Analysis of Slip Steering Robot and Pavement Identification Method
下载PDF
导出
摘要 传感器的不确定度是移动机器人定位中的关键问题;文章对Pineer3-AT滑移转向机器人在转弯时运动学状态进行分析,发现了滑动偏差受地面与轮的摩擦系数及左右两轮的速度影响,通过Adams与Matlab/Simulink联合仿真实验得到了在不同地面不同轮速的滑动偏差的大小多组数据;为了使仿真结果对研究里程计不确定度有一定的参考价值,在仿真轨迹重复性偏差中选取最大值,并对结果拟合,建立了滑动偏差模型,并通过实验进行了验证对比;对仿真结果分析可以得出,摩擦系数越大,在相同速度下滑动偏差越小,根据这一特性,提取小车在不同轮速下的滑动偏差作为地面分类的原始数据;通过k-近邻(KNN)方法,对地面进行分类,识别率达到70%以上。 Sensor uncertainty is a key issue in mobile robot positioning.The paper analyzes the kinematics of the Pioneer3-AT sliding-steering robot during cornering and finds that the sliding amount is affected by the friction coefficient of the ground and the wheels and the speed of the left and right wheels.Adams and Matlab/Simulink co-simulation experiments have obtained multiple sets of data for different sliding speeds at different ground speeds.In order to make the simulation results have a certain reference value for the study of odometer uncertainty,the maximum value is selected in the repetitive deviation of the simulation trajectory,and the results are fitted.The sliding deviation model is established and verified by experiments.Based on the analysis of the results,it can be concluded that the larger the friction coefficient,the smaller the sliding amount at the same speed.According to this characteristic,the sliding amount of the trolley at different wheel speeds is extracted as the raw data of the ground classification.The k-nearest neighbor(KNN)method was used to classify the ground and the recognition rate reached over 70%.
作者 白洋洋 吕洪波 黄吉全 Bai Yangyang;Lv Hongbo;Huang Jiquan(College of Mechanical Engineering and Material,North China University of Technology,Beijing 100144,China)
出处 《计算机测量与控制》 2019年第6期163-166,176,共5页 Computer Measurement &Control
关键词 滑移转向机器人 滑动偏差 不确定度 路面识别方法 sliding-steering robot slippage uncertainty pavement identification method
  • 相关文献

参考文献6

二级参考文献63

  • 1程军伟,高连华,王良曦,王红岩.基于打滑条件下的履带车辆高速转向分析[J].车辆与动力技术,2006(1):44-48. 被引量:32
  • 2陶健民.车辆稳定性控制策略之比较[J].湖北汽车工业学院学报,2005,19(1):1-5. 被引量:6
  • 3安杰,周志立,曹付义.履带滑移和转向中心线偏移对车辆稳态转向特性的影响[J].河南科技大学学报(自然科学版),2006,27(5):18-20. 被引量:6
  • 4Ioncl B, loan L, Franti E, Dascalu M, Moldovan C, Goschin S. Systematic odometry errors compensation for mobile robot positioning. In: Proceedings of the 7th International Conference on the Experience of Designing and Application of CAD Systems in Microelectronics. Washington D. C., USA: IEEE, 2003. 574-576.
  • 5Chung H, Ojeda L, Borenstein J. Accurate mobile robot dead-reckoning with a precision-calibrated fiber optic gyroscope. IEEE Transactions on Robotics and Automation, 2001, 17(1): 80-84.
  • 6Borenstein J, Feng L Q. Measurement and correction of systematic odometry errors in mobile robot. IEEE Transactions on Robotics and Automation, 1996, 12(6): 869-880.
  • 7Chong K S, Kleeman L. Feature-based mapping in real, large scale environments using an ultrasonic array. The International Journal of Robotics Research, 1999, 18(1): 3-19.
  • 8Kleeman L. Advanced sonar and odometry error modeling for simultaneous localisation and map building. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA: IEEE, 2003. 699-704.
  • 9Martinelli A. The odometry error of a mobile robot with a synchronous drive system. IEEE Transactions on Robotics and Automation, 2002, 18(3): 399-405.
  • 10Martinelli A. Modeling and estimating the odometry error of a mobile robot. In: Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems. St. Petersburg, Russia: IFAC, 2001. 420-425.

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部