期刊文献+

基于NSCT和支持向量机的SAR图像识别 被引量:1

SAR Image Recognition Based on NSCT and SVM
下载PDF
导出
摘要 针对传统的合成孔径雷达图像(SAR)识别算法识别精度低,用时长等问题,提出一种基于非下采样轮廓波变换(NSCT)和支持向量机(SVM)的SAR图像识别算法;首先通过非下采样轮廓波变换将目标图像分解成不同的尺度,然后得到目标图像的低频分量和高频分量;接着在高频分量中提取方向梯度直方图特征(HOG),在低频分量中利用局部二值化算法(Local Binary Pattern,LBP)提取纹理特征;然后将提取的梯度方向直方图特征和局部二值化特征空间连结,并使用支持向量机(SVM)作为分类器;最后对算法进行了测试;实验结果表明,该方法不仅能够有效地提高了SAR图像目标分类的精度,在MSTAR数据库上的准确率达到90.7%,而且对相干斑的影响具有较高的鲁棒性。 In view of the low recognition accuracy and long time used of traditional synthetic aperture radar(SAR)image recognition algorithms,a SAR image recognition algorithm based on non-subsampled contourlet transform(NSCT)and support vector machine(SVM)was proposed.Firstly,the image is decomposed at multiple scales through NSCT to obtain the high-frequency and low-frequency components.Then histogram of oriented gradient(HOG)was extracted from the high-frequency component,and LBP(Local Binary Pattern)algorithm was used to extract texture features from the low-frequency component.After that the extracted high and low frequency features are combined and divided by support vector machine.Finally,the algorithm proposed is tested by testing set.Experimental results show that this method can not only effectively improve the SAR image recognition accuracy,the recognition rate on the MSTAR database reaches 90.7%,but also robust to the coherent speckle.
作者 高志帮 刘以安 Gao Zhibang;Liu Yian(College of IoT Engineering,Jiangnan of University,Wuxi 214122,China)
出处 《计算机测量与控制》 2019年第6期218-221,246,共5页 Computer Measurement &Control
基金 国家自然科学基金青年项目(201706096) 江苏省自然科学基金青年项目(BK20160162)
关键词 图像识别 合成孔径雷达 非下采样轮廓波变换 支持向量机 image recognition synthetic aperture radar non-subsampled contourlet transform support vector machine
  • 相关文献

参考文献7

二级参考文献48

  • 1陈劲松,邵芸,李震.基于目标分解理论的全极化SAR图像神经网络分类方法[J].中国图象图形学报(A辑),2004,9(5):552-556. 被引量:15
  • 2孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 3章毓晋.图像处理和分析[M].北京:清华大学出版社,1999..
  • 4Ross Timothy D,Bradley Jeffrey J,Hudson Lanson J,et al.SAR ATR-So what's the problem?-an MSTAR perspective[J].Algorithm for Synthetic Aperture Radar Imagery VI,Orlando,FL,SPIE 1999,3721:662-672.
  • 5Meth R,Chellapa R.Automatic classification of targets in synthetic aperture radar imagery using topographic features[J].SPIE,1996,2757:186-193.
  • 6Grinnell Jones,Bir Bhanu.Recognition of articulated and occluded objects[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1999(21):603-613.
  • 7Kottke D P,Fiore P D,Brown K L,et al.A design for HMM-based SAR ATR[J].Algorithm for Synthetic Aperture Radar Imagery Ⅴ,SPIE,1998,3370:541-551.
  • 8Irving William,Ettinger Gil.Classification of target in synthetic aperture radar imagery via quantized grayscale matching[J].Algorithm for Synthetic Aperture Radar Imagery Ⅳ Orlando,FL,SPIE,1999,3721:320-331.
  • 9David Blacknell,Nicholas S,Arini QinetiQ.Morphological models for SAR ATR[J].Algorithm for Synthetic Aperture Radar Imagery Ⅸ,2002,4727:69-79.
  • 10Geman S,Geman D.Stochastic relaxation,gibbs distributions,and the Bayesian restoration of images[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1984(6):721-741.

共引文献125

同被引文献6

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部