期刊文献+

一类分数阶神经网络的有限时间稳定(英文) 被引量:7

Finite-time stabilization of a class of fractional-order neural networks
下载PDF
导出
摘要 研究一类阶数在1和2之间的分数阶神经网络的有限时间稳定问题.基于反馈控制,得到一个实现有限时间稳定的充分条件.该条件是一个易于验证的代数不等式.不同于早期的证明,本文的证明主要利用Cauchy-Schwartz不等式和Gronwall不等式.最后,数值例子表明了理论结果的有效性. The stabilization problem of a class of fractional-order neural networks with the orders lying in the interval(1,2)is studied.Based on the feedback control,a sufficient condition is obtained to realize the finite-time stabilization of networks.This condition is an algebraic inequality that can be easily calculated in applications.Different from those in earlier works,our proof mainly depends on the Cauchy-Schwartz inequality and the Gronwall inequality.Finally,an example is presented to verify the effectiveness of theoretical result.
作者 杨占英 李静文 谌永荣 YANG Zhanying;LI Jingwen;CHEN Yongrong(College of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074,China)
出处 《中南民族大学学报(自然科学版)》 CAS 2019年第2期309-313,共5页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(11401595)
关键词 分数阶神经网络 有限时间 GRONWALL不等式 fractional-order neural networks finite-time Gronwall inequality
  • 相关文献

同被引文献31

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部