期刊文献+

基于改进重采样的粒子滤波红外车辆跟踪算法 被引量:2

Particle Filter Infrared Vehicle Tracking Algorithm Based on Improved Resampling
下载PDF
导出
摘要 针对传统粒子滤波算法状态方程无法利用多帧信息及重采样阶段的粒子种类缺失问题,提出基于改进重采样的粒子滤波红外车辆跟踪算法,对图像进行预处理,增强图像;引入图像准则并结合多帧信息对粒子滤波的状态方程予以改良,在保证以目标帧间变化为基础的前提下将图像信息更多的结合在状态方程中,提高算法的抗干扰能力;在重采样阶段利用粒子权值设定阈值,在保留原始大权重粒子的基础上引入受小权重粒子影响的新粒子,抑制粒子权重过于集中,保证粒子的多样性。经过实验验证,提出的算法在精确性与抗干扰性方面与传统粒子滤波方法相比有较大提升。 The state equation can’t use the multi-frame information and the particle species in resampling stage are lack in the traditional particle filter algorithm. In view of these problems,a particle filter algorithm based on improved resampling is proposed in the detection and tracking stage. Firstly,the image is preprocessed and enhanced. Then the image criterion is introduced and the state equation of particle filter is improved by combining multi-frame information. As a prerequisite for ensuring the change of target frames, the image information is more combined in the state equation to improve the anti-interference capability of the algorithm. In the resampling stage,the threshold value is set by the particle weight,and the new particle affected by the small weight particle is introduced based on reserving the large weight particle,which can not only restrain the excessive concentration of particle weight,but also ensure the diversity of particles. The experimental results show that the proposed algorithm is more accurate,and has improved anti-interference capability compared with the traditional particle filter.
作者 马天超 MA Tianchao(School of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China)
出处 《无线电工程》 2019年第7期592-596,共5页 Radio Engineering
基金 国家自然科学基金资助项目(61201238)
关键词 粒子滤波 重采样 状态方程 长宽比 圆形度 图像信息融合 particle filter resampling state equation aspect ratio circular degree image information fusion
  • 相关文献

参考文献9

二级参考文献63

  • 1孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 2邱恺,黄国荣,陈天如,杨亚莉.卡尔曼滤波过程的稳定性研究[J].系统工程与电子技术,2005,27(1):33-35. 被引量:22
  • 3刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:356
  • 4方青,梅晓春,张育平.用于机动目标跟踪的Kalman滤波器的设计[J].雷达科学与技术,2006,4(1):50-55. 被引量:21
  • 5张祖勋.王之卓先生的教诲与摄影测量的全数字化道路[M].武汉:武汉测绘科技大学出版社,1998..
  • 6Li J, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10/12) : 1771-1787.
  • 7Mikolajczyk K, Tuytelaars T, Schmid C, etal. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72.
  • 8Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 9Lowe D G. Distinctive image features from seale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 10Ke Y, Sukthankar representation for local R. PCA-SIFT: a more distinctive image descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004, 2:506-513.

共引文献360

同被引文献29

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部