期刊文献+

基于机器视觉和PSO的机器人示教路径优化研究 被引量:2

Research on Robot Teaching-playback Path Optimization Method Based on Machine Vision and PSO
下载PDF
导出
摘要 工业机器人在处理新的生产任务时,需要对其进行示教。目前,传统的机器人示教再现方法存在示教系统复杂、示教时间长以及操作者需要特殊训练等诸多问题。针对上述问题,该文提出了一种基于机器视觉和人手演示的机器人示教方法。首先通过Microsoft Kinect2.0传感器提取人手的示教路径,然后通过粒子群优化算法PSO对人手演示的初始路径进行优化,获得一条优化的机器人运动路径,让机器人完成示教再现。最后,通过实验对基于机器视觉和PSO的机器人示教方法进行验证。实验结果表明,PSO优化后的路径可以有效缩短机器人的运动时间。 Industrial robots need to be taught the steps of completing tasks when dealing with new tasks.At present,the traditional robot teaching reproduction has many disadvantages,such as the complicated teaching system,the high cost,the waste of time,and the special training that operators need.In view of the above situation,a kind of teach-ing-playback based on machine vision and human hand demonstration was proposed in this paper.First the teaching trajectory of the human hand was extracted through the Microsoft Kinect2.0 sensor.Then the initial the human hand demonstration path was optimized by the particle swarm optimization(PSO)algorithm to obtain a better robot motion path,so that the robot can complete the teaching reproduction.Finally,the experiment about robot teaching-playback method based on machine vision and PSO was carried out.The experiment results showed that the optimized path can effectively shorten the robot's motion time.
作者 王亚超 黄沿江 张宪民 WANG Ya-chao;HUANG Yan-jiang;ZHANG Xian-min(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China)
出处 《自动化与仪表》 2019年第6期42-48,共7页 Automation & Instrumentation
基金 国家自然科学基金项目(U1501247,51505151) 广州科技资助项目(201707010318)
关键词 粒子群优化算法 机器人示教 机器视觉 人手演示 particle swarm optimization(PSO) robot teaching-playback machine vision human hand demonstration
  • 相关文献

参考文献5

二级参考文献22

  • 1王敏,黄心汉,吕遐东.微装配机器人无标定视觉伺服[J].华中科技大学学报(自然科学版),2011,39(S2):60-63. 被引量:5
  • 2卢惠民,张辉,郑志强.基于视觉的移动机器人自定位问题[J].中南大学学报(自然科学版),2009,40(S1):127-134. 被引量:8
  • 3胡中华,陈焕明,许明星,王晓峰,李海州.弧焊机器人MOTOMAN示教编程方法[J].电焊机,2006,36(3):40-42. 被引量:10
  • 4刘军传,张玉茹,李振.脑外科机器人视觉伺服研究[J].北京航空航天大学学报,2007,33(3):370-374. 被引量:4
  • 5李燕青,计时鸣.MOTOMAN机器人实时控制的方法研究[J].机电工程,2007,24(7):78-81. 被引量:3
  • 6PAN Z, POLDEN J, LARKIN N, et al. Recent progress on pro- gramming methods for industrial robots[ J]. Robotics and Com- puter-Integrated Manufacturing,2012,28 (2) : 87-94.
  • 7KOHRT C,STAMP R,PIPE A G,et al. An online robot trajec- tory planning and programming support system for industrial use [J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1) :71-79.
  • 8CHEN S B, QIU T, LIN T,et al. Intelligent technologies for ro- botic welding[ M ] //TZYI-I-JONG T, SHAN-BEN C, ZHOU C J. Robotic welding, intelligence and automation. Berlin : Spring-er,2004 : 123-143.
  • 9CHEN S B,ZHANG Y, LIN T, et al. Welding robotic systems with visual sensing and real-time control of dynamic weld pool during pulsed GTAW [ J]. International Journal of Robotics and Automation ,2004,19 ( 1 ) :28-35.
  • 10HUANG W,KOVACEVIC R. Development of a real-time laser- based machine vision system to monitor and control welding processes [ J ]. International Journal of Advanced Manufacturing Technology,2012,63 ( 1-4 ) : 235-248.

共引文献64

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部