期刊文献+

基于直方图均衡化的PCA-SIFT图像特征提取与匹配改进算法 被引量:2

Improved Feature Detection and Matching Algorithm for PCA-SIFT Image Based on Histogram Equalization
下载PDF
导出
摘要 为了克服SIFT算法运算量大、运算耗时长和实时性不强的缺点,课题组提出了基于直方图均衡化PCA-SIFT算法,以增强灰度图像的明暗对比度,增加匹配成功率,改进描述子生成方式,沿用主成分分析法(PCA)降低特征检测维度,减少耗时。仿真实验表明该算法有效地减少了运算时间,并且一定程度上减少了不必要的特征点的匹配数量。新算法能有效减少运算量。 The SIFT feature extraction algorithm has large computation,the operation takes a long time,and the real-time performance is not strong. In order to enhance the contrast of gray images,increase the success rate of matching,improve the way of descriptor generation,and reduce the dimension of feature detection by using principal component analysis ( PCA),the research group proposed a PCA-SIFT ( principal components analysis-SIFT) algorithm based on histogram equalization. The simulation results show that the algorithm effectively reduces the operation time and to some extent reduces the number of unnecessary feature points matching. The new algorithm can effectively reduce the computational complexity.
作者 何成伟 茅健 HE Chengwei;MAO Jian(School of Mechanical and Automotive Engineering,Shanghai University of Engineering and Science,Shanghai 201620,China)
出处 《轻工机械》 CAS 2019年第3期72-76,共5页 Light Industry Machinery
关键词 计算机视觉 特征提取 SIFT算法 直方图均衡化 主成分分析法 computer vision feature extraction SIFT algorithm histogram equalization PCA
  • 相关文献

参考文献7

二级参考文献78

  • 1查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 2周颜军.数据结构[M].长春:吉林科学技术出版社,2003.
  • 3David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(2): 20.
  • 4Rahul Sukthankar, Yan Ke. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattem Recognition. USA: 1EEE, 2004, 1063-6919/04(2004 IEEE): 8.
  • 5K Mikolajczyk, B Leibe, B Schiele. Local Features for Object Class Recognition [C]// Proc. IEEEE Int'l Conf. Computer Vision, 2005. USA: IEEE, 2005, vol.2: 1792-1799.
  • 6Babaud J, Witkin A P, Baudin Metal. Uniqueness of the Gaussian kernel for scale - space filtering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence: (S0162-8828), 1996, 8(1): 26-33.
  • 7T Lindeberg. Feature detection with automatic scale selection [J]. IJCV (S0920-5691), 1998, 30(2): 79-116.
  • 8Cordelia Schmid, Krystian Mikolajczyk. Scale & Affine Invariant Interest Point Detectors [J]. International Journal of Computer Vision (S0920-5691), 2004, 60(01): 24.
  • 9Moravee H P. Towards Automatic Visual Obstacle Avoidance[C]l/ Proc. of the 5th International Joint Conference on Artificial Intelligence. [S. l.]: Springer-Velag, 1977.
  • 10Harris C, Stephens M. A Combined Corner and Edge Detector[C]// Proc. of the 4th Alvey Vision Conference. Manchester, UK: [s. n.], 1988.

共引文献217

同被引文献26

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部