期刊文献+

抗环境音干扰的设备声音故障监测方法 被引量:3

Device Sound Fault Monitoring Method of Anti-Environmental Sound Interference
下载PDF
导出
摘要 变压器等大型设备在运行过程中发声具有辨识性和平稳性的特点,但容易受各种环境音的干扰,针对该问题,本文利用声音信号处理、特征提取、模式匹配等技术,提出了一种抗多种环境音干扰的设备声音故障监测方案.首先对在各种环境声音中变压器的正常和故障声音进行采集和预处理,然后对其提取出MFCC特征并降维,对变压器正常工作声音特征通过OPTICS算法进行训练,得到一个具有多个分类的标准集,最后将标准集与包含故障声音的测试样本进行匹配,若出现不匹配情况但经人工检验为误报,则将其归为新的分类.实验结果表明:该方法不仅能很好的识别样本,也能在新的正常声音出现时通过标准集增强模块来优化标准集,从而提高识别准确率并降低误警率. Large equipment such as transformers has the characteristics of identification and stability during operation, but it is easily interfered by various environmental sounds. To solve this problem, by using sound signal processing, feature extraction, pattern matching, and other techniques, this study proposes a device sound fault monitoring scheme that is resistant to multiple environmental sound disturbances. First of all, the normal and faulty sounds of transformers in various ambient sounds are collected and preprocessed. Then, MFCC features are extracted and dimensionality is reduced. Next, the normal working sound characteristics of the transformer are trained through the OPTICS algorithm to obtain a standard set with multiple clusters. Last, the standard set is matched with the test sample containing the faulty sound. If there is a mismatch, but the manual test is a false positive, it will be classified as a new cluster. The experimental results show that the proposed method can not only identify the sample well, but also optimize the standard set through the standard set enhancement module when the new normal sound appears, thus improving the recognition accuracy and reducing the false alarm rate.
作者 李兰村 廉东本 毛立爽 LI Lan-Cun;LIAN Dong-Ben;MAO Li-Shuang(University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang Institute of Computing Technology,Chinese Academy of Sciences,Shenyang 110168,China)
出处 《计算机系统应用》 2019年第6期89-94,共6页 Computer Systems & Applications
关键词 特征提取 聚类算法 数据降维 声音识别 故障监测 feature extraction clustering algorithm data reduction voice recognition fault monitoring
  • 相关文献

参考文献4

二级参考文献111

  • 1张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:60
  • 2张玲华,郑宝玉,杨震.基于LPC分析的语音特征参数研究及其在说话人识别中的应用[J].南京邮电学院学报(自然科学版),2005,25(6):1-6. 被引量:13
  • 3李培强,李欣然,陈辉华,唐外文.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005,25(24):73-78. 被引量:131
  • 4朱志松.战场声目标特征提取研究[J].探测与控制学报,2006,28(3):9-11. 被引量:12
  • 5ZAJDEL W, KRIJNDERS J D, ANDRNGA T. Audio-video sensor fusion for aggression detection [ A ]. Proceedings of the 2007 IEEE International Conference on Advanced Video and Signal based Surveillance [ C ]. London:IEEE Computer Society,2007.
  • 6LEE C H, CHOU C H, HAN C C. Automatic recognition of animal vocalizations using averaged MFCC and linear discriminant analysis [ J ]. Pattern Recognition Letters, 2006,27 ( 2 ) : 93-101.
  • 7WANG J C,WANG J F,WANG Y S. Chip design of MFCC extraction for speech recognition [JJ. Integration,2002,32 (1/2) :111 -131.
  • 8RABAOU I A,DAVY M, ROSSIGNOL S. Using one-class SVMs and wavelets for audio surveillance [ J ]. IEEE Transactions on Information Forensics and Security, 2008,3 (4) : 763-775.
  • 9RABAOU I, LACHIR I Z, ELLOUZE N. Using HMM-based classifier adapted to background noises with improved sounds features for audio surveillance application [J]. International Journal of Signal Processing,2008,5 (1) :46-55.
  • 10RADHAKR I R, DIVAKARAN A, SMARAGDIS A. Audio analysis for surveillance applications [ A ]. Proceedings of the 2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics [ C ]. washington, DC :IEEE Computer Society,2005.

共引文献33

同被引文献43

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部