期刊文献+

广播机制解决Shuffle过程数据倾斜的方法 被引量:4

Method Research to Solve Shuffle Data Skew Based on Broadcast
下载PDF
导出
摘要 在Spark 计算平台中,数据倾斜往往导致某些节点承受更大的网络流量和计算压力,给集群的CPU、内存、磁盘和流量带来了巨大的负担,影响整个集群的计算性能.本文通过对Spark Shuffle 设计和算法实现的研究,深入分析在大规模分布式环境下发生数据倾斜的本质原因.提出了广播机制避免Shuffle 过程数据倾斜的方法,分析了广播变量分发逻辑过程,给出广播变量性能优势分析和该方法的算法实现.通过Broadcast Join 实验验证了该方法在性能上有稳定的提升. In the Spark computing platform, data skew often causes some nodes to withstand greater network traffic and computing pressure, which imposes a huge burden on the cluster’s CPU, memory, disk, and traffic, affecting the computing performance of the entire cluster. Through the research on Spark Shuffle design and algorithm implementation, and deep analyses on the essential reasons of data skew in large-scale distributed environment, this study proposes a method to avoid data skew in shuffle process through the broadcast mechanism, analyzes the process of broadcast variable distribution logic, and gives the algorithm implementation and performance advantage analysis of the method. The performance of the method is improved by the Broadcast Join experiment.
作者 吴恩慈 WU En-Ci(Shanghai Qiyu Information Technology Co. Ltd., Shanghai 200120, China)
出处 《计算机系统应用》 2019年第6期189-197,共9页 Computer Systems & Applications
关键词 数据倾斜 分区策略 洗牌算法 广播机制 data skew partition shuffle broadcast
  • 相关文献

参考文献5

二级参考文献23

共引文献46

同被引文献16

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部