期刊文献+

常系数非齐次线性微分方程的特解探究 被引量:3

Special solution of nonhomogeneous linear differential equations with constant coefficients
下载PDF
导出
摘要 本文针对求常系数非齐次线性微分方程的特解进行了探究,根据右端函数f(x)的三种不同的pm(x),e^λxpm(x),e^αx[pm1(x)cosβx+pm2(x)]类型,给出其伴随方程概念,都统一到第一种类型pm(x)上来,两种通过对m+1元线性方程组的求解,得到常系数非齐次线性微分方程的特解,关键思路是求伴随方程的解。还可以用来求某些不定积分,简化积分计算过程。 In this paper,the special solution of the non-homogeneous linear differential equation of constant coefficient is explored.According to the three different types of right-end functions,the concept of the accompanying equation is given,and all of them are unified to the first type.Two special solutions to non-homogeneous linear differential equations with constant coefficients are obtained by solving m+1 linear equations.The key idea is to find the solution of the accompanying equation.It can also be used to find some indefinite integrals and simplify the integral calculation process.
作者 吴亚敏 WU Ya-min(College of Mathematics and Statistics,Huanggang Normal University,Huanggang 438000,Hubei,China)
出处 《黄冈师范学院学报》 2019年第3期25-31,共7页 Journal of Huanggang Normal University
关键词 微分方程 特征方程 伴随方程 线性方程组 differential equation characteristic equation accompanying equation linear equations
  • 相关文献

参考文献5

二级参考文献15

共引文献11

同被引文献30

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部