摘要
磨机负荷参数是影响选矿流程产品质量和产量的难以检测关键过程变量.磨机研磨产生的多源机械信号频谱与磨机负荷参数间存在复杂的非线性映射关系.核潜结构映射(KPLS)算法适合构建基于频谱数据的磨机负荷参数预测(MLPF)模型.针对上述难点,本文提出一种面向MLPF的自适应多核潜结构映射选择性集成(SEN)模型.首先,基于经验模态分解(EEMD)和时频变换技术处理多源机械信号,得到基于不同时间尺度候选子信号的频谱数据;接着,采用KPLS和分支定界选择性集成(BBSEN)算法,构建基于多尺度频谱的候选子子模型和SEN子模型;最后,从候选子子模型和SEN子模型中优选获得不同时间尺度的候选子信号模型,并再次采用BBSEN算法优选集成子信号模型并加权组合,构建最终的MLPF模型.基于实验球磨机的实际运行数据仿真验证了所提方法的有效性.
Load parameters inside ball mill are difficulty-to-measure key process variables relative to production quality and quantity of the whole grinding process.There are complex nonlinear mapping relationships between mill load parameters (MLPs) and multi-source mechanical frequency spectral data.Kernel project to latent structure (KPLS) algorithm is suitable to build mill load parameter forecasting (MLPF) model based on such frequency spectral data.Aim to these problems, a new adaptive multi-kernel projection to latent structure selective ensemble (SEN) model for MLPF is proposed. At first,candidate sub-signals' frequency spectral data with different time scales are obtained by using ensemble empirical model decomposition (EEMD) and time/frequency transformation techniques from multi-source mechanical signals.Then, candidate sub-sub-models and SEN-sub-models are constructed based on different frequency spectral data by using KPLS and branch & bound SEN (BBSEN) algorithms.Finally,the candidate sub-signal models are optimal selected from these candidate sub-sub-models and SEN-sub-models;BBSEN is used again to select ensemble sub-signal models from these candidate ones and to weight them.Therefore,the final MLPF model is constructed.Simulation results of a laboratory-scale ball mill show effectiveness of the proposed approach.
作者
汤健
乔俊飞
刘卓
周晓杰
TANG Jian;QIAO Jun-fei;LIU Zhuo;ZHOU Xiao-jie(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing 100124,China;State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang Liaoning 110189,China)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2019年第6期951-964,共14页
Control Theory & Applications
基金
Supported by the National Natural Science Foundation of China(61573364,61703089)
the State Key Laboratory of Synthetical Automation for Process Industries(PAL–N201504)
the State Key Laboratory of Process Automation in Mining&Metallurgy and Beijing Key Laboratory of Process Automation in Mining&Metallurgy(BGRIMM–KZSKL–2018–06)