摘要
目的通过M300模具钢曲面磨抛加工实验研究,解决传统抛光工艺效率低下等问题。方法采用弹性球头磨具对M300钢进行了曲面抛光加工,设计单因素实验和正交实验,研究主轴转速、磨具粒度、进给速度、切削深度等主要工艺参数对表面粗糙度与材料去除率的作用。使用Hilbert路径走刀方式进行加工,可均匀遍历整个待抛曲面,利用五轴加工中心作为试验平台,电子分析天平、三维表面形貌仪作为检测仪器,得到优化的工艺参数和优选区间。结果在9组选取的磨抛参数中,能够获得较为理想的表面粗糙度(0.078μm),材料去除率和磨耗比分别为2.152 mm3/min、0.07。对表面粗糙度影响较大的因素为切深,对材料去除率影响较大的因素为切深和进给速度。对于多目标优化,切深、主轴转速、进给速度、磨具粒度的影响程度逐次降低。优化后的工艺参数组合为:球头磨具320#,主轴转速4500 r/min,切深0.4 mm,进给速度80mm/s。结论采用弹性球头磨具磨抛可提高M300模具钢的材料去除率,改进加工表面质量,进而提高加工效率。
The work aims to solve the problems of low efficiency of traditional polishing process through the experimental research on the surface grinding and polishing of M300 steel. The elastic ball type abrasive tool was used polish and grind M300 steel. Single factor experiment and orthogonal experiment were designed to study the influence of main process parameters on the surface roughness and material removal, such as spindle speed, abrasive grain size, feeding depth and cutting depth. In the experiment, the Hilbert path was used to evenly process the entire surface. The five-axis machining center was used as the test platform, and the electronic analytical balance and three-dimensional surface topographer were used as testing instruments to obtain the optimal process parameters and preferred interval. Among the selected 9 sets of polishing parameters, the ideal surface roughness of 0.078 μm was obtained, the optimized removal rate was 2.152 mm3/min, and the wear ratio was 0.07. The factor significantly affecting the surface roughness was the cutting depth. The factor having greater influence the material removal rate was the change in cutting depth and feeding speed. For multi-objective optimization, the influence of cutting depth, spindle speed, feeding speed and abrasive size decreased in turn. The optimum combination of process parameters was: ball type abrasive tool: 320#, spindle speed: 4500 r/min, cutting depth: 0.4 mm and the feeding rate: 80 mm/min. The use of ball type abrasive tool can increase the material removal rate of M300 steel and improve the quality of the machined surface, thus enhancing the processing efficiency.
作者
吴晓君
杨洋
舒骁
张凤勇
张露
WU Xiao-jun;YANG Yang;SHU Xiao;ZHANG Feng-yong;ZHANG Lu(School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China)
出处
《表面技术》
EI
CAS
CSCD
北大核心
2019年第6期361-369,共9页
Surface Technology
基金
国家自然科学基金项目支持(51375361)~~
关键词
球头磨具
表面粗糙度
材料去除率
磨耗比
多指标优化
灰色系统
ball type abrasive tool
surface roughness
material removal rate
wear ratio
multi-index optimization
grey system